
80

THE INTRODUCTION TO THE SPOCK FRAMEWORK
Vladimír Oraný
AppSatori s.r.o, vladimir.orany@appsatori.eu

ABSTRACT:

This article introduces the essentials of testing applications using the Spock framework. It uses
comparison to the JUnit testing framework so the readers can much simpler understand its usage.
It also shows the benefits of using the Groovy language instead of the Java language for writing
tests.

KEYWORDS:

Spock, Groovy, test driven development, Java, JUnit, specification

INTRODUCTION

The Spock framework [1] is specification framework with mock capabilities build on the top of
Groovy language [6]. It was created by Peter Niederwieser as a perfect example of using the
language to create new powerful domain specific language (DSL) which uses operator
overloading and abstract syntax tree manipulation on the daily basis. The goal of the framework
is allow developer to write more readable and writable specification. The Spock framework is
inspired by many well known tools such as JUnit [12], jMock [14] or RSpec [13].

WHY TO USE SPOCK FRAMEWORK?

Before we start to learn about the Spock framework one question sure arises in your heads. Why
should you use yet another testing framework? Next two lists summarize the main befits. More
ideas could be found at Why Spock wiki page [2].

The Benefits of Using Groovy Instead of Java

The Spock framework is written using the Groovy language so developers can benefit from all
the features it provides.

Dynamic language

Dynamic language helps to implement true test driven development. You can call methods and
use properties which do not exist yet without having to deal with the compiler errors. This can
help you to implement features step by step.

No access check for private methods and fields

Groovy does not check privacy access to the methods and fields. According to the Groovy bug
#3010 [7], there is no run time penalty if you can call private methods and access private fields.

81

This could be particularly useful for white box testing. The calculator example uses this feature
to access the registry field.

Less boilerplate code using the Groovy syntax and language enhancements

Groovy adds a lot of syntax sugar to the Java language syntax. Closures, ranges and list and map
literals are just a few of them. Groovy also adds many useful methods to standard Java classes
e.g. every and any methods for collections.

Power asserts

The power assertions were first introduced in the Spock framework but now they are part of the
Groovy language itself. Instead of pointless assertion error shows Groovy values for each object
involved in the assertion as shown in following example.

Example 1 - Power assert

Condition not satisfied:

calc.display == "E"

| | |

| = false

| 1 difference (0% similarity)

| (=)

| (E)

eu.appsatori.ts2011.Calc@46dd75a4

 at eu.appsatori.ts2011.CalcSpec.Zero division shows 'E' on

display(CalcSpec.groovy:151)

The Benefits of Using the Spock framework Instead of JUnit

Although many helpful features of the Groovy language help testing software the Spock
framework adds much more.

Implicit assertion in expect and then clauses

There is no need to use the assert keyword in expect and then clauses. Each line is evaluated
against the Groovy truth.

Easy parameterization and data driven tests

It is extremely easy to parameterize any feature method using the where block. The parameters
generator can be anything which cans Groovy iterates e.g. the SQL query result.

Easy extensible

The Spock framework is easy to extend. There are already extensions for the Spring or the Grails
framework. The Geb functional testing tool also flawlessly integrates with it.

82

Easy mocking

Mocking is essential part of the Spock framework. It has a powerful DSL to specify object
interactions.

Compatible with JUnit

Every Spock specification extends the spock.lang.Specification class which is just plain JUnit 4
test case which uses special runner called Sputnik. For example, if your IDE supports Groovy
and JUnit you can start using Spock anytime you want.

Examples

Example code showing full Spock and JUnit comparison can be found at
http://link.appsatori.eu/ts2011. There you can find full specification used in examples here and
its JUnit counterparts.

THE SPOCK FRAMEWORK ESSENTIALS

The first thing to do if you want to write the Spock specification is to extend
spock.lang.Specification class. According to Spock Basics [3] page the typical layout of the
specification class is following:

● fields
● fixture methods
● feature methods
● helper methods

Because the most interesting things happen in the feature methods let discover the other ones
first.

Fields

Fields used by more feature methods should be declared as instance fields of the specification
class. Those fields are not shared between features method. The initialization is called before
each feature method instead. If there is a need to share field between feature methods it must be
annotated by spock.lang.Shared annotation. This is particularly useful for expensive resources
such as SQL connections.

Example 2 - Fields definition

@Shared sql = Sql.newInstance("jdbc:h2:mem:", "org.h2.Driver")

def calc = new Calc()

Fixture methods

Fixture methods are equivalents of @Before, @BeforeClass, @After and @AfterClass annotated
methods and their purpose are to set up and clean up fixtures for feature methods. Following
feature methods are available:

● setup() - called before each feature method

83

● cleanup() - called after each feature method
● setupSpec() - called before the first feature method
● cleanupSpec() - called after the last feature method

Example 3 - Fixture methods examples

def setup(){

 println "This is called before each feature method."

}

def cleanup(){

 println "This is called after each feature method."

}

def setupSpec(){

 sql.execute '''

 create table basics (

 id int primary key,

 first int,

 operator char(1),

 second int,

 result int);

 '''

 sql.execute '''

 insert into basics

 (id, first, operator, second, result)

 values

 (1, 4, '+', 2, 6),

 (2, 4, '-', 2, 2),

 (3, 4, '/', 2, 2),

 (4, 4, '*', 2, 8)

 '''

}

def cleanupSpec(){

 sql.execute 'drop table basics'

}

Helper methods

Helper methods are just regular methods which help to modularize feature method by extracting
repetitive code into one place.

Example 4 - Helper method example

def pushButtons(numbers){

 numbers.each {

 calc.push it as String

 }

}

84

Feature methods

The most important part of specification lies in the feature methods. They are just instance
methods of the class which are usually named by meaningful string name such as “The stack
‘pop’ method must throw exception if empty”. What makes method a feature method is presence
of one of the blocks defined by Spock: setup (given), when, then, expect, cleanup, where. Each
block begins with label of the same name optionally followed by describing string. What are the
blocks good for you can read in following parts.

Setup Blocks

Setup is optional block where the fixtures for the feature methods are created. It has an alias
“given” to allow writing specification in usual form given-when-then. It is the only one block
which label can be omitted. All statements between the beginning of the method and the first
block is considered as setup block. Setup block is called before each assumption. Setup block
must always be the first block of the method.

When and Then Blocks

When and then blocks comes always together. When block gives the stimulus and the then block
asserts the response is adequate. When blocks can contain any code but then blocks must contain
only conditions, exception conditions and interactions. Conditions are any statements which can
be evaluated to the Groovy truth. Exception conditions are defined by calling one of thrown or a
notThrown method which assumes that exception of given type was or wasn’t thrown.

Example 5 - Feature method with exception condition and condition

def "Zero division shows 'E' on display"(){

 when:

 calc.push '5'

 calc.push '/'

 calc.push '0'

 calc.push '='

 then:

 notThrown ArithmeticException

 calc.display == "E"

}

Exception conditions are defined by calling one of thrown or a notThrown method which
assumes that exception of given type was or wasn’t thrown.

Example 6 - Feature method with interactions

def "Calc uses given operators at the right time"(){

 setup:

 Operator plus = Mock()

 Operators operators = Mock()

 Operators old = calc.operators

 calc.operators = operators

85

 when:

 pushButtons([1,2])

 then:

 0 * operators.get(_)

 when:

 calc.push '+'

 then:

 1 * operators.get('+') >> plus

 0 * plus.operate(_,_)

 when:

 pushButtons([1,2])

 then:

 0 * operators.get(_)

 0 * plus.operate(_,_)

 when:

 calc.push '='

 then:

 1 * plus.operate(12, 12) >> 24

 cleanup:

 calc.operators = old

}

Interactions verify that some method was called on the mock object and how many times it
happened. It uses powerful syntax which can easy specify how many times (number or range)
should be some method (identified by name or regular expression) on particular (or even any)
mock object called and what the result (or results) of the call should be. For more information,
visit Interactions page of Spock framework wiki [4].
Feature method can contain as many when-then block pairs as needed to simulate scenario
approach.

Expect

Expect block is just like then blocks. It is useful when there is no need for when block. It can
contain any parts which the when block can contain.

Example 7 - Feature method with expect block

def "Zero must be shown on new calculator’s display"(){

 expect:

 calc

 calc.display == 0 as String

}

86

Cleanup

The cleanup block is counterpart to the setup block. Its purpose is to undo all undesirable
changes which were introduced during the feature method. Only the where block or the end of
method can follow the cleanup block.

Where

The where block serves for feature method parameterization. You can use any variable and use it
as feature method parameter. Parameters are defined using the table like block with variables in
headers and its values in columns or you can use the left shift operator in single or multiple
assignment. The right hand side must be anything the Groovy language can iterate e.g. SQL
results.

Example 8 - Feature method using table like where block

def "Pushing numbers multiple times must append number to the display"(){

 when:

 pushButtons numbers

 then:

 calc.display == result as String

 where:

 numbers | result

 [1,2,3] | 123

 [2,2] | 22

 [0,1,2] | 12

}

Example 9 - Feature method using SQL as parameters generator

def "Basic operators must work as expected"(){

 when:

 calc.push first as String

 calc.push operator as String

 calc.push second as String

 calc.push '='

 then:

 calc.display == result as String

 where:

 [first, operator, second, result] << sql.rows(

 'select first, operator, second, result from basics'

)

}

SUMMARY

This article introduced the Spock specification framework. When compared to JUnit the Spock
specifications are much more like test suites than individual tests. Each feature method could
contain its setup and cleanup block as well as they could be parameterized easily by where
blocks. This could be in JUnit achieved only at test class level (see source codes for further more

87

details). In general, Spock specifications are more flexible and readable. This also applies even
when things go wrong thanks to detailed power asserts which dumps shows all involved objects.

LITERATURE

1. NIEDERWIESER, Peter. Spock : the enterprise ready specification framework [online].
2011 [cit. 2011-04-08]. Available on the World Wide Web:
<http://code.google.com/p/spock/>.

2. NIEDERWIESER, Peter. Why Spock [online]. 2011 [cit. 2011-04-08]. Available on the
World Wide Web: <http://code.google.com/p/spock/wiki/WhySpock>.

3. NIEDERWIESER, Peter. Spock Basics[online]. 2011 [cit. 2011-04-08]. Available on the
World Wide Web: <http://code.google.com/p/spock/wiki/SpockBasis>.

4. NIEDERWIESER, Peter. Interactions [online]. 2011 [cit. 2011-04-08]. Available on the
World Wide Web: <http://code.google.com/p/spock/wiki/Interactions>.

5. NIEDERWIESER, Peter. Spock Web Console [online]. 2011 [cit. 2011-04-08]. Available
on the World Wide Web: <http://meetspock.appspot.com/>.

6. Groovy : Home [online]. 2011 [cit. 2011-04-08]. Available on the World Wide Web:
<http://groovy.codehaus.org/>.

7. [#GROOVY 3010] : fix private field visibility [online]. 2009 [cit. 2011-04-08]. Codehaus
Jira. Available on the World Wide Web: <http://jira.codehaus.org/browse/GROOVY-
3010>.

8. Groovy JDK : Overview [online]. 2011 [cit. 2011-04-08]. Available on the World Wide
Web: <http://groovy.codehaus.org/groovy-jdk/>.

9. Groovy Truth [online]. 2010 [cit. 2011-04-08]. Available on the World Wide Web:
<http://docs.codehaus.org/display/GROOVY/Groovy+Truth>.

10. LAFORGE, Guillaume. Groovy 1.7 release notes [online]. 2010 [cit. 2011-04-08].
Available on the World Wide Web:
<http://docs.codehaus.org/display/GROOVY/Groovy+1.7+release+notes>.

11. JUnit 4 Tutorial 6 : Parameterized Tests [online]. 2009 [cit. 2011-04-08]. Available on
the World Wide Web: <http://www.mkyong.com/unittest/junit-4-tutorial-6-
parameterized-test/>.

12. Welcome to JUnit.org [online]. 2009 [cit. 2011-04-08]. Available on the World Wide
Web: <http://junit.org>.

13. RSpec.info: Home [online]. 2009 [cit. 2011-04-08]. Available on the World Wide Web:
<http://rspec.info>.

14. JMock: An Expressive Mock Object Library for Java [online]. 2009 [cit. 2011-04-08].
Available on the World Wide Web: <http://jmock.org>.

15. Duckapter: Duck Typing Support for Java [online]. 2010 [cit. 2011-04-08]. Available on
the World Wide Web: <http://duckapter.googlecode.com>

