PROGRAMMING IS ALSO DEBUGGING

Rudolf Pecinovsky

ICZ a.s., Na Hebenech 11 1718/10, 140 00 Prague 4,

University of Economics, Prague, Faculty of Infotiostand Statistics, Department of Infor-
mation Technologies

rudolf@pecinovsky.cz

ABSTRACT:

When we talk about teaching programming, we madittguss only how to teach the art of
coding. Possibly we accompany it with a discussinrteaching the art of analyzing and de-
signing. During these discussions we do not redhag¢ students (and professional program-
mers as well) do not spend most time by codingldyutiebugging. However, the standard
courses usually do not deal with the art of prapelyugging. The paper addresses this handi-
cap and is searching for the way to incorporate tibpic into our courses.

KEYWORDS:
Teaching of programming, debugging.

1 INTRODUCTION

Most of so called programming textbooks deals nyawith the syntax of the language being
taught and with explaining the contents of the nmimgtortant libraries. Sometimes we meet a
textbook that also tries to teach how to desigmgmms. However, the art of finding errors
and fixing them is discussed very rarely, and iftb@ authors are touching this subject (e.qg.
[2], [5], [6], [8], [9]) only on a few pages. Becsaiof the limited space they can only present
the basic rules and principles mostly without tifaive examples allowing students to exer-
cise their understanding similarly to the otherlakyed subjects.

Omitting the explanation of debugging may mislelad teaders making them to think
that programmers simply write the program and tteggam works. When then the readers
start to write own programs, they become disillned. Their programs are not as perfect as
they are supposed to be. In addition they getratest because of their inability to find and
fix errors. It is often strengthened by the teachdno is under pressure of time allowing
him/her to show only, where the error should beemed, and at the same time preventing
him from explaining the issue in more depth. In Wath case he/she only quickly corrects
the error so as to keep explaining the subjecta &snsequence the student is not capable of
repairing a similar error next time.

Many teachers claim that they teach students hdimdoand repair bugs. However, tak-
ing a closer look at their teaching, we reveal thay teach only how to write tests for reveal-
ing the expectable errors. The teacher suggests stioalld be tested and how it should be
tested. In the standard courses and textbooks gowot find any explanation how to react
when the program does not work. The goal of thislaris to suggest the way to change it.

In the following sections first | mention the typlcsituation we meet daily, when stu-
dents writing a program discover an error. (Marackeers know them and they surely are able
to add other examples.) Then | will discuss whaineed to be able teach designing programs
together with their debugging.

2 STUDENT CATEGORIES

Unfortunately, in every class there are students are not able to find the source of the error
and grope for explaining the behavior of their perg. Before we start to ponder on teaching

88

debugging, we should remind ourselves that studamtsnot a homogenous group. We can
split them into several categories:

» The students, who want to specialize themselves different profession (mostly man-
agement) and who consider the mandatory subjgmiogiramming an inevitable evil.

» The students, who are interested in programmingndr@want to learn it. We split them
again into two categories:

* The beginners who have never been programmingédaefor

* The students, who know to program and who bringesamavitable wrong habits
with their experience, too.

Each category needs a specific approach. Let’s hdwek at some typical situations and re-
actions we can meet across all categories (maythewithe most experienced students).

2.1 *“There is an error in your program”

One of the most common cases is the situation, evtier student announces that there is an
error in the teacher's program. The student wrbte program exactly according to the
teacher’s instructions (often he/she copied it fibie board) and the computer reports an er-
ror. Students are therefore sure that the erroit in@ion the teacher’s side. When you ask
them what an error occurred, they answer that tleegot know — simply an error. This situa-
tion appears most often especially in the beginiesgons.

All these students are absolutely sure that theigngam is the letter-to-letter copy of the
teacher's one — no mistakes, no typos. These duder not surprised that the program
works on the other computers and does not workein bne. They are pretty sure that the er-
ror comes from outside. It is astonishing that altwm student tries to read the error message
that often clearly tells what the problem is. Maylrethe first lessons the beginners do not
understand these messages, but they should ameistan attempt. When the message will
appear the next time, they can build on its previexperience.

The errors appearing after copying down some exaipqagrams are mostly syntactic er-
rors, which professional programmers do not takeefoors, but typos, because they are im-
mediately and simply reparable. In such cases dngpder messages are mostly sufficiently
clear for fixing them also by beginners.

2.2 “ltreports an error”

A similar situation occurs, when an error appeara program written by the students them-
selves. The students are certain that the erranatdme in their small program and that it
therefore should be in the incomprehensible “mats@mpiling and running their program.

It's true that the error message from the throwceetion is often much less comprehen-
sible than the error messages from the compileo@meing a syntax error. Nevertheless, even
the exception messages can often be analyzed stmplytain sufficient information for de-
tecting the source of problems.

In such cases the most important is the acceptainte rule: “The more beginning the
programmer is, the sooner he/she starts seardmngrtor in the compiler, operating system,
colleagues, the teacher or in anything else outssdeode”. The experienced programmer,
who runs exotic parts of libraries and frameworkegts such an error once in 10 years in av-
erage. However, the programs in the beginning esutse the parts of the environment,
which have been tested through and through mamgstiamd so we can trust that they do not
hide some peculiar error waiting for us.

89

2.3 “Computer does something else than the program presibes”

Another typical problem happen when the progranelsadvior differs from the behavior pre-
scribed in the source code. For instance, the stad#how you the parts, where the program
assigns the right value to the right variable amdhie next step the computer says that the
value was not assigned. They complain that the coenpuns their program incorrectly, what
means the computer is doing something differemhfrehat the program prescribes.

It is only a variation of the behavior describedad | am always asking: “Why do you
think that the computer is doing something incdiy@cAre you sure, that the computer runs
through this part of the program?” | must repeatetiless: “Do not trust anything you see in
the code without verifying that the computer runsotgh it. Believe only the behavior the
computer shows you. In such cases you need firstetdy that the program really runs
through the problematic part of the code.”

2.4 Summary

The situations described above belong to the pviendnes. Their solutions are often simple and
do not require some deep knowledge of debuggingstlilat is enough when students adopt
some internal discipline: start to read the obthimessages and to search for the source of errors
inside their code only. The genuine debuggingsstaiten the simple solutions are unacceptable
and the students are spending hours by lookingeim tode, by comparing their programs with
the demonstration ones and by useless investigahene the error can be this time.

3 HOW TO TEACH DEBUGGING

| make a step aside. Most mathematics assignmentagic and grammar school’s level can
be solved by simple substituting the right valueshie appropriate formula. The only excep-
tions are geometrical constructional tasks andofaxy algebraic expressions. There are no
general rules for solving these tasks. The studgmisld learn these subjects by solving suf-
ficient amount of examples.

Teaching programming is similar in that there asnynproblems, which we can solve by
simple “substituting values into a formula”:

» If the program is supposed to choose one of theraepossible continuations, we define
the appropriate condition and use a conditionaéstant.

» If we are supposed to do something with all elesénain array, we use a loop.

» If we need to repeat the same segment of the doskevaral places, we define a subpro-
gram and call it from these places.

e And so on, and so on...

Beside these tasks there is a big amount of taghgse solution cannot be described in a
general way. Finding and fixing bugs (debugginglobgs to this category too. Although,
there are some rules for behaving in some typicabatons (e.g. when the
NullPointerException is thrown), however even these rules do not gtodine goal because
they only indicate the right path.

3.1 Literature

As | mentioned in the beginning, almost any bodacléng programming and especially books
trying to introduce the beginners to the world adggamming do not deal seriously with de-
bugging. If the authors mention debugging in thexis, they explain only general rules such as
“for each class define its test class”, “use logsse theassert statement” and so on.

There are several books concentrating on debugwmiograms under development (e.g.
[1], [3], [4], [7], [14]), however, these books amet suited for the beginners. The beginners
need another kind of books.

90

3.2 Collections of examples

When we learned mathematics we used textbooksanitbilection of examples helping us to
learn how to solve mathematical problems. Theresanee programming textbooks based on
solutions of examples (e.g. [2], [8], [9]). There also some textbooks with collection of
programming exercises. However, | do not know aalliphed collection of programs for
teaching debugging.

Such an attempt to prepare a mini collection ofjpmms with common bugs and to show
how to find and fix these bugs is work [13]. Therlw@s supplemented by a set of animated
explanations showing the debugging process usigi¢bhugger integrated in BlueJ IDE. We
can reproach its author for many inaccuracies awdesimmaturity, however, this work
shows the direction.

4 SUMMARY

The paper explains why teaching debugging shoul@drbéntegral and equipollent part of
teaching programming, despite it is still being myeked. It summarizes the present status
and emphasizes the insufficient concentration anftbld in comparison with the time spent
by this effort. It reminds several most frequerdlppems which we encounter at students and
it suggests a solution. Finally, it introduces adsint work preparing a foundation of the fu-
ture collection of solved examples showing howiid fand fix bugs in programs.

REFERENCES

[1] BUTCHER PaulDebug It!: Find, Repair, and Prevent Bugs in Yowdé.Pragmatic
Bookshelf 2009. ISBN 978-1-934356-28-9

[2] DEITEL H. M., DEITEL P. J.Java How to Program,*7Edition. Prentice Hall 2007,
ISBN 978-0-132-22220-4

[3] DiMarzio J.F..The Debugger's Handbookuerbach Publications 2006. ISBN
978-0-8493-8034-1.

[4] GROTKER Thorsten, HOLTMANN Ulrich, KEDING Holger, WDKA Markus: The
Developer's Guide to Debuggin§pringer 2010. ISBN 978-90-481-7387-7.

[5] HORSTMAN C. S.Big Java (3d Edition). John Wiley and Sons 2007. ISBN:
978-0-470-10554-2.

[6] LIANG, Y. Daniel: Introduction to Java programming: comprehensivesi@r. Pearson
Education 2010. ISBN 978-0-13-213080-6

[7] METZGER Robert Charle®ebugging by Thinking: A Multidisciplinary Approadbig-
ital Press 2003. ISBN 978-1-5555-8307-1.

[8] PECINOVSKY Rudolf:0O0P — Naudte se myslet a programovat objekto@omputer
Press 2010. ISBN 978-80-251-2126-9.

[9] PECINOVSKY Rudolf:Myslime objekta¥v jazyku Java — kompletnéebnice pro z&-
techiky, 2. aktualizované a ro#8hé vydaniGrada 2008. ISBN 978 247 80 2653 3.

[10]PECINOVSKY Rudolf:Vyuka OOP zakzakladnich a gednich $kolSbornik konfer-
ence Objekty 2003, Ostrava, ISBN 80-248-0274-0.

[11]PECINOVSKY Rudolf:Pro¢ a jak wit OOP zéaky zakladnich arstnich SkolZilinska
didaktickéa konferencia, 2004, Zilina.

[12]PECINOVSKY Rudolf:Vyuka programovani pro praxsbornik konference Informatika
XXI 2008, Lazre Luhatovice.

[13]ZAVERKA Jakub:Alternativni vyukové materialy pro vstupni kurzggnamovani-
Bakal&ska prace, VSE 2010.

[14]ZELLER AndreasWhy Programs Fail — A Guide to Systematic Debugduhgygan
Kaufman 2009. ISBN 978-0-12-374515-6.

91

