INTRODUCTION TO COMPOSITE-ORIENTED
SOFTWARE DESIGN

Zbynék Slajchrt

ICZ a. s., Na Febenech 11 1718/10, 140 00 Praha 4,

University of Economics, Prague, Faculty of Infotrosiand Statistics, Department of
Information Technologies

zslajchrt@gmail.com

ABSTRACT

This article briefly introduces an emerging arctiibmical style — composite-oriented
design. To demonstrate its potential two other vapieead architectonical styles (service-
oriented and object oriented styles) are shortgented with focus on their weaknesses. The
article claims that these weaknesses are inheneintedate to dividing applications into tiers
and layers. Composite-oriented design abandonsotfigept of tiers and offers a solution
based on the concept of fragments that are loedbgs to the global tiers. These fragments
are reusable building blocks that are put togethéorm bigger autonomous units called
composites. The fragments collaborate within themasite to implement the requested
functionality. A part of the author's thesis is dimpment of a Java language extension called
Chaplin ACT, whose purpose is to introduce dynacoimposition of objects by means of the
tools and concepts of the Java language.

KEYWORDS:
Software architecture, object-oriented programm8@A, multi-tier architecture

1. INTRODUCTION

There are two principal and de facto orthogonahigectonical styles that dominate in the
domain of designing enterprise applications — thitirtier (aka service-oriented) and the
object-oriented styles. While the first consideseavice as the key concept and promotes
dividing the system into physically separable timsgl separation of data from the business
logic, the latter favors keeping both the data lagit in a compact unit called object. For
either style there are boundaries within whichdhe style thrives better than the other.
However, there exists a certain domain of applicetiin which these styles suffer from some
inherent drawbacks that cannot be solved easily thig framework given by either paradigm.
This article briefly acquaints the reader with thessues and proposes a solution, which stems
from an emerging architectonical style called cosigsoriented design [1].

The main objective of this article is to explaie thasic principles of the composite
oriented architecture of software applications glaith the motivations for it. Before delving
into the ideas of the composite design the two ebnentioned and more or less antagonistic
architectonical styles are briefly explained stirggsheirs pros and cons. All design
approaches are presented within the context ahplsiweb application for managing photos
that is helping to illustrate the key traits of @qgroaches, such as extensibility and
reusability. The author has intentionally chosas #pplication as a representative of the
application domain, in which using the compositsigie can be the better choice comparing
to the other presented approaches. This domaiegatie applications, where a smooth
interaction with the user is the priority, in cagt to the applications, where the user’s
presence is secondary. The key factor for theseogsdric applications is that their behavior
and responses accommodate to the user’s profileeeds. The user is not only an isolated
consumer of services; however, he or she entekgehcinto the interactions with the

97

application and is becoming an active element efstystem.

2. MULTI-TIER ARCHITECTURE STYLE

The name of this architectonical style prompts thatkey characteristics of this
architectonical style are tiers. Each tier providest of services that are utilized by the upper
neighbor tier. A tier represents a certain domaiwlhich a particular type of tasks can be
solved. At the same time, this domain determinggsegific vocabulary used for formulating
problems and goals. Therefore, the communicatitnwden the tiers can be seen as a
translation between two languages. Figure 1defhetsiers, which an application can be
composed of along with typical vocabularies useithiwithem.

Client tier
(eg. web browser)

HTTP

Application services

DAO, JPA

3

JDBC
y Database tier
(eg. MySQL)

Figure 1: Multi-tier design

Let's remind the key virtues that are often assediavith the multi-tier architecture:

A scalabity

A reliability

A availabilty

A maintainability

A security.
Of course, there are some limitations, among wti@se belong to for example:

A demanding administration.

A increasing chance of a failure of a nodas the number of nodes increases

A worse response

A costs
Let's return to the motivation application mentidme the introduction. Let's inspect how we
could design its architecture within the multi-tgaradigm. The following picture 2 shows the
communication between the client and the applicatio

T srender{request: UiModel

liMode
Client PhotallIControfler

) sfindfid): Phota
5T sswore{photo)
WW‘M sresize(phota, wideh, height): Phoro
ta the isor sratate{photo, angle): Photo

PhotoService
<<stateless>>

The photo is bedng stored to the session

#d

*name
sCreater
~date

-

L Da
hotn imageDara

Figure 2: Three-tier design of the application

The scenario, in which the client sends a requestifowing the page with a selected
photography, proceeds as follows: the requestgtucad by component

98

Phot oUl Cont rol | er, which is looking for the photography in the dasé by means of
methodf i nd of servicePhot oSer vi ce. If the photography is found the
Phot oUl Cont rol | er constructs an HTML representation of the photo r&tarns it to the
client in the form of HTTP response.

Though, this approach manifests some weaknessedirgtone relates to
polymorphism. As long as the application is to supmultiple types of photography, while
there are some methods that behave differently iggpect to the distinct photography types,
the application tier must be aware of this diffeem the implementation of each service that
is affected by the difference, in contrast to thgeot-oriented approach, which allows hiding
this difference through its natural support of pobrphism.

Let’s look now at another scenario, in which we tayeng to integrate the application
with another one. Let’s imagine it is necessarytegrate the functionality of our photo
album with a student information system. It shdugdpossible to open a student’s
photography from the student’s page in the inforamasystem. The page with the
photography should contain also the basic inforomaéibout the student. Furthermore, the
page contains a button for changing the formahefghotography. It is natural to require that
the integrator reuse the functionality of the phaittum at the most. Figure 3 illustrates a
possible schema of the integration.

SIS PhatoAlbum

W\ dekorace Ul modely | \
f \ 4 .)
UlMode N J -\.\“_ " J
Client SwdentPhotoUlControlier PhotoUIController
loking for ithe student

+find(id}); Student
*stare(student) i
snormalizePhoto{photo)

StudentService PhotoService

f T\ changing the dimen sionsf
|

Jof the photegraphy]

.5\’. "'"jl N
Student Photo
Figure 3: The design of the integration scenaridhia three-tier design

The main weakness of this approach is a low retifgeeghoto album’s data domain.

If the data of the student information system dreghoto album is stored in the same
database, it would be efficient to fetch both studend photography related data by one
database query. Furthermore, this single queryavailirn only the data required for the
pending operation. It is being shown that becadisleeostrict separation of the two systems it
is not possible at the same time to reuse the ifumadity of component
Phot oUl Cont rol | er and to query for the necessary data by a singdeyqtihis is a
general trait of strictly separated applicatiorst tommunicate by means of services, which
may cause some limitations in case of a need @ €ral reuse the data model.

3. OBJECT-ORIENTED ARCHITECTURE STYLE

It is interesting that the best practices and padtased during developing applications
within the framework of the multi-tier paradigm efit contradict the best practices applied in
the object-oriented design. Another interestingeass that the service oriented applications
(i.e. layered applications) are being developeabject-oriented languages like Java or C #.
The object orientation of these languages, i.er thest important feature, is often used only
marginally. In the service-oriented applications key element is a service, i.e. a procedural
element that processes and/or provides data. Ttheadd the business logic are separated. On
the other hand, the object oriented approach istgxdne opposite. The key element is an
object that encapsulates both the data and the.logi

99

Let’s go back to the photo album application. Tokofving figure 4 shows the schema of
an object-oriented design for the application.

I‘;'{_r"
- ;'| N srender|request); UlModel
'F__,.J‘”' " sway ié: bl stored

Client PhotaUIContraller Hona .
€
{ ™ sfind{id): Phote
'{.\1‘ sstare{phots)
PhotaGareway
<<stateful>>
*id
. “name
/“""-\\ *Crearor
[\ +dare

]
------ !Iu

Phate

simageData

=resize{photo, width, height): Photo
srotate{phote. angle). Photo

Figure 4: The object oriented design of the applaa

At first look, the schema is very similar to thattlee multi-tier approach. The first significant
difference is moving the business logic to the Blarttity. The second important difference is
that the application keeps the state on the semveontrast to the multi-tier approach. While
in the case of the multi-tier architecture it i< mecessary to keep the state of conversation
between the application and the client, this desigres the photo in the session on the server
and every operation that the client invokes isgrened on it. The state of this entity, i.e. the
effect of the client’'s operations, is kept in themory until the client decides to store it back
to the database.

In contrast to the multi-tier design, this approdoles support polymorphism. Anytime it
happens that a new kind of photography should terporated to the application, a new class
is created and derived from the base class refdregengeneral photography.

Let’s look now, how the object-oriented approaclhkesaout the problem of integrating
applications. (Figure 5)

"SI5" PhotoAlbum
L, . LA
request Y" \ Ul model decoration i \
—) N/
UlModel ;}g‘v J L
Client StudentPhotoUIController PhotoUIController
looking for|the student I
_ur—;.@:'-.N B,
e, staref) f \
*find(id): Student :'I 1 r {]
*store() \ y \ Jfl
— -
StudentGateway PhotoGateway

o

—
ff \.changing the dimensions{ \

*narmalizePhota() i‘-. Jof the phatography Il\ j{

% .
i S e

Student Photo
Figure 5: The object oriented design of the intdipra

The schema is very similar to the one shown inctee of the multi-tier approach. The key

difference is that it contains stateful componeamsl that the communication between the
applications is carried out at all three tiers and only at the topmost one. Unfortunately, it

turns out that the object-oriented approach do¢delp either to resolve the problem of the

simultaneous reuse d?hot oUl Cont r ol | er component and the database model. The
following chapter deals with an alternative apptoaalled the composite design and that is
able to resolve all the above-mentioned problems.

100

4. COMPOSITE DESIGN?

The composite design stems from the idea of spbuailding blocks calledragmentsA
fragment can posses the typical object properiesdentity, encapsulation, inheritance and
polymorphism, however, it is not always necessafyagment does not have to be utilizable
until it becomes a part of some other compositéyetitusually represents a certain narrowly
defined aspect of composite’s existence, for exaraiece of data, a set of coherent
operations, crosscutting concerns like loggingusgg various constraints and so on. A
fragment may also require a presence of anothgmieat in the composite for its correct
functionality. A simple illustrative example of tikemposite design is here [5]. Some of these
ideas can be implemented in dynamic languages$itleon or Ruby [6], and also the Scala
language provides a very useful concept of tra@s is very close to the concept of fragments
[3]. The Qi4J framework is attempting to providplatform for designing statically
composed applications in Java [4]. As a part otlnesis the author develops a Java language
extension called Chaplin ACT, which is aimed atadticingdynamic composition of objects
by means of the tools and concepts of the Javaiéayeg[2].

In the case of the photo aloum we can identify tlata fragments. The first represents
the picture data itself while the other represéimsmetadata, like height, width, format etc.
Furthermore we can identify two behavioral fragnseifhe first is for the operations on the
photography and the other for creating the HTMLspreation of the photography.

The next important concepts are thaassembleandformula The assembler is a
constructor of composites which builds them aceaydo a given formula. The formula
contains guidelines written in a special languageatsembling a composite. (In some sense,
the formula replaces the concept of class asu$esl in Java, for instance).

The following picture depicts the schema of a cositeadesign of the photo album
(Figure 6).

A, Beginning the work

P "-1\

i || Phote

. /- Recipe
Client Assembler

create. sive, destroy
B.Woarking with the photo
id

- /, 3 ”‘é\ mame

screator

¥ o l\\ A
d F & 4%t e
LIMade i A 111 simageData
twyy :
Client \ \\\ - —7 sresizefwidth, height)
| \‘ o ,/ srotatefangle)
o

srender(request): UlMadel
Photo

Figure 6: The schema of the composite orientedydesi the application

The most distinctive trait of this design embodrethe absence of tiers. They are replaced by
fragments. The scenario for beginning to work with application performs as follows: the
client sends a request containing the identifiethefphotography. The assembler captures the
request, which assembles a new composite accotditizge given formula. For the sake of
simplicity, let's consider only three fragments: eomlata fragmentPhot oDat a, one
behavioral fragmenPhot oLogi ¢ and one presentational fragméittot oUl Logi c. The
formula may look as follows:

! | intentionally use terrmomposite desigimstead of the similar tercomponent desigio emphasise the fact
that the composite is of primary concern in thiprapch. The traditional concept of component dsfme
component as an autonomous, independent and reusaibproviding a defined functionality and depiegd
on other components through interfaces. The bigltiocks of composites in my approach — fragments —
have a similar purpose, however, in contrast tactimponents, they are often not capable of an ewldgnt
existence and they must be integrated to a highieriie. the composite, to provide their functititya

101

=

Formula parameter: photography identifier

2. Create a fragmerPhot oDat a and initialize it from the database by means ef th
following query: ,SELECT id, nane, creator, date FROM photo
WHERE id = 9%°“ where the unique parameter is the photograprenitfier.

3. Create instances of fragmerRRBot oLogi ¢ andPhot oUl Logi ¢

4. Compose all three fragment instances into one caitgobject.

The fragment composition illustrates the followigure 7.

Photo Photo Photo
UlLogic Logic Data

L ! J

Photo @

Figure 7: Composing the fragments

The composite is then stored into the session ailyibs in the case of the object-oriented
approach. Simultaneously, the assembler calls defireed method for creating the default
HTML presentation that returned to the client. Badsequent request will be routed directly
to the composite as the assembler's responsilsilitymanage the life-cycle of objects.

Let's try to find out, how to integrate the pholiouem with the student information
system. It is the task which neither the multi-ner the object-oriented approach does
gracefully because of impossibility to share thgpobmodel.

The schema of the integration is shown on the fahig figure 8.

A. Beginning the work

Clignt Assambler

create, save, dostroy
B.Waorking with the photo

Client

StudentPhata
Figure 8: Integrating the applications by meansbénging the composite's formula

It is clear, that this schema is practically ideatiwith the previous one, but another formula
and extended fragments. The extended fragmentiepieted on the following figure 9.

102

Student 1
Student Photo l
\

Student
Photo
Data

Photo
UlLogic

Logic

StudentPhoto

-_’

Figure 9: Extending the fragments

All three fragments for this integration scenarre derived from the original fragments by
means of inheritance. Th&t udent Phot oDat a data fragment contains the student’s
personal data in addition. Thét udent Phot oLogi ¢ behavioral fragment posses in
addition the logic for modifying the size of the agbbgraphy, while the
St udent Phot oUl Logi ¢ presentation fragment overrides the original methior
generating the HTML representation of the photolgyagnd adds additional HTML elements.
The formula for the assembler can look as follows:
1. Formula parameter: the photography identifier
2. Create an instance of fragmdpthiot oDat a and initialize it from the database by
means of this query:SELECT * FROM photo | NNER JO N st udent ON
st udent . phot ol D=phot 0. | D WHERE student.id = %" where the
unique parameter corresponds to the photographstitier.
3. Create instances of fragmer8sudent Phot oLogi ¢ a St udent Phot oUl Logi ¢
4. Compose all three instances into one compositectbje
In the query we used the JOIN clause for joinirglibth models. We can conclude now,
that we have utilized at the most all contempocamyponents from the photo album
application by means of inheritance and simultasowe have achieved optimal sharing
data models of both applications.

5. CONCLUSION

The main goal of this article was to explain theibadeas of the composite design in
comparison with two other architectonical styleSGA and OOA&D — and in the context of
a simple web application. In contrast to the twmeotapproaches the composite oriented
design is being evolved and is not very establigtetd

It has been shown that for a certain domain ofiagfbns using the composite paradigm
may be the better choice since the traditional @ggres are not able to cope with the inherent
problems such as uneasy extending the applicatittnother types that inherit from existing
entities (the multi-tier approach) and the probigith sharing data models between the
integrated applications (the object oriented désign

The composite oriented design, which can be coreside generalization of the object
oriented design, solves the illustrated problentssamultaneously offers an alternative view
at the modeled system, in which the global tieesraplaced with local fragments as the
building blocks for the composite structures in épglication.

At present, the composite oriented approach cappbked with the help of the dynamic
programming languages. The downside of this walgadack of the static type system. The
Qi4j framework allows the programmer to apply thetis composition of fragments. As a

103

part of author's thesis is developing a Java lagg@xtension called Chaplin ACT, which is
aimed at introducing dynamic composition of objdntsneans of the tools and concepts of
the Java language.

REFERENCES

[1] Reenskaug, Trygve; Coplien, JamesThe DCI Architecture
http://www.artima.com/articles/dci_vision.html

[2] Slajchrt, Zbyrk: Chaplin ACT http://www.iquality.org/chaplin

[3] Scala Languagenhttp://www.scala-lang.org/

[4] Qi4j, http://www.qi4].org/

[5] Composite Oriented Programmiridtp://iridescence.no/post/Composite-Oriented-
Programming.aspx

[6] Metaprogramming in Ruby and Python,
http://codeblog.dhananjaynene.com/2010/01/dynaigiealding-methods-with-
metaprogramming-ruby-and-python/

104

