
105

C++0X: IMPACT ON THE PROGRAMMING PRACTICE

Miroslav Virius
České vysoké učení technické v Praze, Fakulta jaderná a fyzikálně inženýrská
miroslav.virius@fjfi.cvut.cz

ABSTRACT:

Selected features introduced by the expected new C++ programming language standard are
presented in this article and their impact on the common programming practice is briefly
discussed. Short examples of selected features are given.

KEYWORDS:

C++0x, object oriented programming, declaration, list initialization, lambda expression,
variadic template, constructor,

1. INTRODUCTION
This article discusses some of the expected changes and their impact on the common
programming practice. We shall refer to the C++ language conforming to the valid standard
[1] as to the C++03; the expected new standard is referred to as C++0x. This article is based
on the latest draft [2].

First, we briefly recall the history of the C++ programming language here. In the following
sections, we present the new features concerning the object oriented programming in C++ 0x,
the new form of initialization and function definition. The next section contains very terse
summary of the other news in the C++ programming language.

2. BRIEF HISTORY OF THE C++ PROGRAMMING LANGUAGE
Since 1983, when the C++ programming language was introduced by B. Stroustrup, it
developed significantly.

The first versions of this language were compiled to the C code. Thus, the corresponding C++
specifications were denoted as “C front”. The Cfront 1.0 was introduced by B. Stroustrup in
1985 on behalf of the Bell Laboratories of the AT&T Company. It was the C programming
language with the classes supporting single inheritance only without virtual functions. The
first commercial version, released in 1985, added the virtual functions, the references and the
operator overloading, among other features.

Next major version, the Cfront 2.0 released in1989, introduced the multiple inheritance and
the multiple inheritance, abstract classes, static member functions and protected members.

In 1990, The Annotated C++ Reference Manual [4] was published. This book acted for long
tima as an unofficial C++ standard and became the basis for the future standard. The new
features introduced were the templates, the namespaces, the run-time type identification and
the exceptions.
The first version of the international standard ISO/IEC 14882 was published in 1998. The
main feature added was the Standard Template Library. It was well known that this library
was incomplete, mainly due to the standard template library design and related changes it the
language syntax (viz. the templates and template metaprogramming features use in the STL).
The revision of this standard, published in 2003 [1], fixed elementary problems, but din dot
bring any substantial change to the core language, (i.e. to the C++ syntax as well as to the

106

C++ standard library). The new version of the standard, informally known as C++0x, shall
appear in the end of the year 2011 and will bring some changes in the core language.

2. OBJECT ORIENTED FEATURES IN THE C++0x
The main intent of the changes is to submit the programmer some useful language features
that appeared in some newer programming languages, such as Java or C#.

2.1 Class Declaration
The class declaration may contain additional specifications describing properties of the class.

2.1.1 Final Class
It was not possible to prohibit the descendant class derivation in C++03, if you did not use
syntactic tricks like private constructors – and this “solution” was sometimes unusable. In
C++0x, the final specifier in the class heading declares the final class, i.e. the class that
cannot serve as a base class. This specifier, if used, should follow the class name, prior to the
base class’s specification.

2.1.2 Explicit Override of the Virtual Methods
If you declare a virtual method in the base class in C++03, you need not repeat the virtual
specifier in the descendant class. Moreover, there is no syntactical difference between the
declaration of a new virtual method and the override of an existing method. This may
introduce some tricky errors:

- You could accidentally override a virtual method, even though you intended to
introduce a new one.

- You could introduce a new virtual method, even though you intended to override
existing one.

The C++0x brings a solution. If you declare the derived class with the explicit specifier,
you will have to add the override specifier to any method declaration that overrides an
inherited virtual method. This specifier is inserted between the function header and the
function body; it follows the const method specifier, if used. The compiler will report an
error in the case you forget to add this specifier to an overriding method, as well as in the case
you add it to a method that does not override any virtual method in the base class.

Note that if you omit the explicit specifier, the C++0x compiler will treat the derived
class in the same way as the C++03 compiler.

2.1.3 Hiding Inherited Members
If you declare a new member in the derived class that has the same name as a member of the
base class, you hide it. It is still accessible using some syntactic tricks, but if you did it
accidentally, you may get some tricky errors.

In C++0x, if you declare the derived class with the explicit specifier, you will have to add
the new specifier to any member declaration that hides the same name in the base class. If
you add the new specifier to a member that does not hide a name in the base class, or if you
forget to add it, you will get a compile-time error, if the declared member hides a name.

2.1.4 Examples
A brief example follows. Given the base class,

class Base

{
public:

virtual void function();

107

typedef int T;
};

we can derive a new class,

class Derived explicit: public Base
{
 public:
 // ...
};

If we declare a method in the Derived class

virtual void funtion() override;

we get an error message because of the misspelled name, because the new method does not
override any method of the Base class. If we declare a new method

void T();

we will get an error, because this declaration hides the name T from the base class. If it is our
intent, we have to write

void T() new;

2.2 Constructors
Even the rules for the constructors have been subject of changes. The basic limitations
concerning the call of another constructor of the same class or the constructor inheritance
have been alleviated.

2.2.1 Call of another constructor of the same class
There is no way to call another constructor of the same class to perform a part of the
initialization in C++03. If you have a common part in more than one constructor, you have to
extract it into a private method and to call it from all the constructors that use it.

C++0x allows one constructor to call another one. To call it, you have to write the constructor
call in the initializer list of the calling constructor, in a similar manner as the call of the base
class constructor. A brief example follows:

class X
{
 int x, y;
 public:
 X(): x(0), y(0) {}
 X(char* text): X() {cout << text << endl;}
};

Both constructors initialize the data members by zeroes; moreover, the second one prints the
text.

2.2.2 Constructor inheritance
Constructors are not inherited in C++03; instead, the derived class constructors call one of the
base class constructors. In C++0x, you may demand that all the constructors of the base class
are inherited. This is done by the using declaration:

108

class Y: public X

{
 public:

 using X::X;

};

There is no way to inherit only one constructor or selected ones. You have to inherit all or no
one.

2.2.3 Explicitly defaulted constructors
If you do not declare any constructor in a class, the compiler declares, and if necessary even
creates the default constructor. If you declare at least one constructor, the compiler will not
create any one. This can be changed in C++0x. You may ask the compiler to generate the
default constructor using the syntax

class S
{
 public:
 S() = default;
};

The same syntax applies for some other special member functions, viz. for the copy
constructor, the destructor or the copy assignment operator.

2.2.4 Member initialization
The new version it the C++ language shall allow the member initialization to be written in the
member declaration. Thus, the following will be correct:

class Y: public X

{
 int n = 6;

// ...

};

This initialization will be performed by any constructor.

2.3 Deleted member functions
One the interesting feature of the C++0x is the possibility to delete a member function. The
syntax is similar to the explicit declaration of the default member function, but it uses the
delete keyword. The deleted function may not be called; any attempt to do it will cause a
compile-time error. This feature may be useful to forbid some special member functions that
would be generated by default. E.g., the non-copyable class may be declared in C++0x as
follows:

class CopyMeNot

{
 public:
 CopyMeNot(const CopyMeNot&) = delete;

109

 CopyMeNot(const CopyMeNot&&) = delete;
 CopyMeNot& operator=(const CopyMeNot&) = delete;
 CopyMeNot& operator=(const CopyMeNot&&) = delete;
};

This feature may be used for some special effects, e.g. to prevent the function to be called
with all argument types except one:

class IntOnly

{
 public:
 void f(int);
 template<typename T> void f(T) = delete;
};

This will prevent the compiler to do any parameter conversions, because the template
instantiation would be used instead – and the template is deleted.

3. INITIALIZATION
The C++03 uses different syntax for the initialization of the so called POD-types (arrays and
structs in the C-style) and different syntax for the class objects and built-in types. The C++0x
brings uniform initializer syntax and the way to initialize the containers with the array-like
syntax.

3.1 Uniform Initialization

The new syntax for the initialization is based on the list of inicializers, i.e. on the syntax of the
array initialization. The initializer is enclosed in the brackets:

class Test
{
 int member;
 public:
 Test(int value) : member{value} { /* ... */ }
 // ...

The instance if the Test class may be initialized as follows:

Test test{6};

or

Test test = {6};

The same syntax may be used for the POD-types (arrays and C-style structs), too.

3.2 Initializer List
The new container class std::initializer_list<T>, declared in the
<initializer_list> header, may be initialized by the initializer list of the form
{value_1, ... value_n}.

110

auto x = {1,2};

will be of the type std::initializer_list<int> and will contain the given values.
Any class, which has the constructor of the std::initializer_list<T> type, may be initialized by
the initializer list. This is the case of all the STL containers (vector<>, queue<> etc.)
The braced list of coma separated initializers may appear in the function argument list, in the
return statement, on the right hand side of the assignment operator, as an initializer in the new
expression and in some other contexts. Nevertheless, it is not considered to be an expression
of the std::initializer_list<T> type, thus it may mot appear in more complex
expressions.

4. FUNCTION DECLARATIONS AND LAMBDA EXPRESSIONS
Lambda expression is an old functional concept appearing in the most common contemporary
programming languages recently. In fact, it is a brief form of the function declaration that
may be used as a function argument, as a member initialization etc.

4.1 New function declaration syntax
To start the function declaration with the return type is not always suitable; especially
template function return type may depend on the argument types. To resolve this, a new
(alternative) function declaration syntax was introduced:

- The auto keyword stays instead the return type.
- Identifier and parenthesized parameter list follows in usual manner.
- The return type specification stays behind the -> arrow.
- If the declaration is the definition, the normal function body follows.

An example follows:

template<typename T, typename U>
auto f(T x, U y) -> decltype(x+y){return r+y;};

Note the decltype() specifier in the return type declaration. This is new to C++0x. It
deduces the type of the expression in the parentheses and may be used in declarations.

4.2 Lambda expressions
Lambda expression starts with the lambda introducer, which may be of the form []. Next is
the parameter list in usual form. This “lambda header” may be followed by the mutable
keyword. Next is the -> arrow followed by the return type specification; the last part is the
lambda expression body (i.e. the function body). The lambda introducer may contain the so
called capture list, i.e. the list of all local variables in the enclosing scope that are used in the
lambda expression body. It specifies which variable is captured by value and which one is
captured by reference.
An example follows:

auto f = [=]() -> int { cout << "hello" << endl; };

The = in the lambda introducer declares that all the local variables are captured by value. The
f variable will be of an implementation defined class type that has an overloaded function call
operator. Thus, this function may be called by writing simply f();.

111

Lambda expression can be implicitly converted to pointer to function with the same signature.
The mutable keyword, if used, forbids the changes of the local copies of the local variables
captured by value.

5. SHORT REVIEW OF SOME OTHER NEWC++0x FEATURES
We discussed selected news in detail in the previous sections. Here we give a very terse
synopsis of some other changes expected in the C++ standard.

- The throw specification in function declarations will be deprecated (even thouch it
will be included in the standard); new specification, noexcept, will be introduced
for functions that do not throw exceptions.

- Range based for command (a loop iterating through a container) will be added.
- The explicit keyword may be used not only in the constructor declaration, but in

the conversion function declaration in the C++0x. As you can expect, it will prevent
the compiler to use of this conversion tool for implicit conversions.

- Attributes like [[carries_dependency]] or alignas() may be used in
declarations. Attributes specify additional information for various source constructs
such as types, variables, names, blocks, or translation units.

- The auto keyword will mean the storage class specifier no more. Instead, it is used
either in the variable declaration where the compiler should infer the variable type
from the initializer type, or in the new style function declaration to denote that the
return type follows the parameter specification.

- R-value references (declared using the && modifier) are introduced.
- The nullptr constant of the predefined type std::nullptr_t representing the

null pointers should be used instead of the NULL macro.
- The export templates will be omitted. This keyword will be reserved “for further

use”.
- The extern template specification is introduced. This specification will prevent the

template instantiation.
- Template aliases, i.e. the declaration of the typedef templates, will be added.
- Variadic templates (templates with variable number of parameters) may be used.
- New container classes including unordered_set and unordered_multiset,

unordered_map and unordered_multimap will be added to the STL. (Those
are the hash table implementations.)

- Support for multiple random number generators producing uniform probability
distribution and “engines” generating a set of predefined probability distributions will
be added to the STL.

- Multiple auxiliary classes were added to STL.
- Data types long long, unsigned long long, new character types and headers to

treat integer types (according to the C standard [3]) will added, as well as the tools to
access the computational environment. Rules for the integral promotions will be based
on the conversion ranks of the integral types.

- String literals supporting the UTF-16, UTF-32 and other Unicode formats will be
added.

- Operators for the programmer-defined literal definition will be added. (It will be
possible to define the suffix for the definition the short constant, e.g.)

- In the enum declaration, it will be possible to specify an integral type as the
underlying type. The variables of the enum type will be stored with the layout of the
underlying type.

112

- New forms of the enum declaration will be available. The enum class and enum
struct declarations will introduce the scoped (strongly typed) enum. The
enumerators of this type will have to be qualified by the type name using the ::
operator and no implicit conversion to integral types will be provided. Note that enum
class and enum struct should be semantically equivalent.

- Multithreading support will be part of the core language. It will be based on the
std::thread class, mutexes (represented by the std:: mutex and std::
recursive_mutex classes) and other synchronization facilities and the promises
and futures representing the not yet finished computations.

- The thread_local storage class specifier will serve to declare thread-specific
static data.

- New class std::unique_ptr for the smart pointers should be introduced.
- The std::auto_ptr<> template, the std::unary_function,

std::binary_function and some other auxiliary classes should be deprecated.
- Alternative integer types (int32_t etc., described in <inttypes.h>) according to

the current C standard [3] are introduced.
Some features, included in the previous standard proposals, will not be included:

- Concepts (probably not yet finished),
- decimal types,
- special mathematical functions in the like the Bessel functions, Legendre polynomials

etc.

6. C++0x AND THE PROGRAMMING PRACTICE
The new features introduced by C++0x may be divided into several groups.

6.1 Completing the missing features
Some standard library classes, e.g. the hash tables, were intended, but not included in the
previous C++ standards, because their proposal was not finished in time. The fact that they
are eventually supplied will close the gap in the standard library that was filled in by several
proprietary – and thus mutually incompatible – implementations.

6.2 Deprecated features of the previous standard
There were a few features of the C++03 that led to unclean code; some of them seemed to be
very useful in the early 90’s, when they were designed, but proved to be rather problematic.
One the most apparent one was the freedom not to declare explicitly the override of the virtual
function in the derived class. This could result in obscure errors in the program behavior that
were difficult to find.
Other problematic feature is the throw clause in the function declaration, because it
introduces strong code coupling. Changing the exceptions thrown in one function could result
in sudden death of the whole program, because the specification of the thrown exceptions was
not changed in some other function calling the first one.
These features must be kept for the backward compatibility, but should be prevented in the
new code.

6.3 Features increasing the programmers comfort
Language features like the auto keyword denoting that the compiler should infer the type of
the variable, the lambda-expressions etc. simply increase the programmers comfort. They
enable terser, more concise expression of the programmer’s intent. If carefully used, they may
lead to cleaner, easier-to-understand and easier-to-maintain programs.

113

6.4 Backward compatibility

This is probably the most important aspect of the new standard. The standardization
committee declares that the new C++ will be “almost” 100% compatible with the C++03. It is
clear that introduction of the new features or the extensions of existing ones will not cause
problems in programs adhering to the C++03 standard. The auto keyword was in fact never
used, thus the change of its meaning would cause no troubles, too.
The export templates omission will be more problematic, because some compilers supported
it recently. This will probably raise the necessity to rewrite some proprietary header files. The
deprecation of the throw clause in the function declaration will – may be – change the
programming practice, but the compilers will have to support it for some time, because it was
in use for a long time and in some cases it was required by the previous standard.

7. CONCLUDING REMARK
This article is based on the draft of the standard, thus some features described here may
change in the final release. Nevertheless, it is obvious that the new C++ version will be easier
to use for experienced programmers. On the other hand, C++ is probably the most
complicated programming language ever used; some of the changes introduce new
complexity to it.
Up to now, only few compilers implement the new features – and of course no one implement
them fully. It will take several years to the full impact of the changes.

Acknowledgement
The work on this article was supported by grants no. LA08015 a SGS 11/167 of the Ministry
of Education, Youth and Sports of the Czech Republic.

REFERENCES

[1] ISO/IEC 14882:1998. Programming Languages – C++. Genève: ISO/IEC 2003.

[2] Working Draft. Standard for Programming Language C++. Doc. No. N3242. Genève:
ISO/IEC 2011. Available at
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
[3] ISO/IEC 9899:1999. Programming Languages – C. Genève: ISO/IEC 1999.

[4] Stroustrup, B., Ellis, M.: In 1990, The Annotated C++ Reference Manual. Addison-
Wesley 1991. ISBN 0-201-51459-1

