C++0X: IMPACT ON THE PROGRAMMING PRACTICE

Miroslav Virius
Ceské vysokeé teni technické v Praze, Fakulta jaderna a fyzikaldenyrska
miroslav.virius@fjfi.cvut.cz

ABSTRACT:

Selected features introduced by the expected newpBagramming language standard are
presented in this article and their impact on th@mon programming practice is briefly
discussed. Short examples of selected featuragi\as.

KEYWORDS:

C++0x, object oriented programming, declaratiost, iitialization, lambda expression,
variadic template, constructor,

1. INTRODUCTION

This article discusses some of the expected chargktheir impact on the common
programming practice. We shall refer to the C+-gleage conforming to the valid standard
[1] as to the C++03; the expected new standarefésned to as C++0x. This article is based
on the latest draft [2].

First, we briefly recall the history of the C++ gramming language here. In the following
sections, we present the new features concernenglifect oriented programming in C++ 0x,
the new form of initialization and function defiloib. The next section contains very terse
summary of the other news in the C++ programminguage.

2. BRIEF HISTORY OF THE C++ PROGRAMMING LANGUAGE
Since 1983, when the C++ programming language mtasduced by B. Stroustrup, it
developed significantly.

The first versions of this language were compitethe C code. Thus, the corresponding C++
specifications were denoted as “C front”. The Cfrb® was introduced by B. Stroustrup in
1985 on behalf of the Bell Laboratories of the AT&bdmpany. It was the C programming
language with the classes supporting single irdmec# only without virtual functions. The

first commercial version, released in 1985, addedvirtual functions, the references and the
operator overloading, among other features.

Next major version, the Cfront 2.0 released in198®oduced the multiple inheritance and
the multiple inheritance, abstract classes, staémber functions and protected members.

In 1990, The Annotated C++ Reference Manual [4] was published. This book acted for long
tima as an unofficial C++ standard and became #iseslior the future standard. The new
features introduced were the templates, the narnesptne run-time type identification and
the exceptions.

The first version of the international standard I=Q 14882 was published in 1998. The
main feature added was the Standard Template ibiawvas well known that this library
was incomplete, mainly due to the standard temfilai@ry design and related changes it the
language syntax (viz. the templates and templatapmegramming features use in the STL).
The revision of this standard, published in 2003 fijted elementary problems, but din dot
bring any substantial change to the core languageo the C++ syntax as well as to the

105

C++ standard library). The new version of the stddinformally known as C++0x, shall
appear in the end of the year 2011 and will brimge changes in the core language.

2. OBJECT ORIENTED FEATURESIN THE C++0x
The main intent of the changes is to submit thgmmmer some useful language features
that appeared in some newer programming languagek,as Java or C#.

2.1 Class Declaration
The class declaration may contain additional spatibns describing properties of the class.

2.1.1 Final Class
It was not possible to prohibit the descendantsatiesivation in C++03, if you did not use
syntactic tricks like private constructors — ang tisolution” was sometimes unusable. In
C++0x, thef i nal specifier in the class heading declares the Gileas, i.e. the class that
cannot serve as a base class. This specifiered,should follow the class name, prior to the
base class’s specification.

2.1.2 Explicit Override of the Virtual Methods
If you declare a virtual method in the base clasS++03, you need not repeat ther t ual
specifier in the descendant class. Moreover, tiseme syntactical difference between the
declaration of a new virtual method and the overnflan existing method. This may
introduce some tricky errors:

- You could accidentally override a virtual methode though you intended to
introduce a new one.
- You could introduce a new virtual method, even tifoyou intended to override
existing one.
The C++0x brings a solution. If you declare thedst class with thexpl i ci t specifier,
you will have to add thever ri de specifier to any method declaration that overriges
inherited virtual method. This specifier is insdrteetween the function header and the
function body; it follows theonst method specifier, if used. The compiler will rejpan
error in the case you forget to add this specitiean overriding method, as well as in the case
you add it to a method that does not override artyal method in the base class.

Note that if you omit thexpl i ci t specifier, the C++0x compiler will treat the deve
class in the same way as the C++03 compiler.

2.1.3 Hiding Inherited Members
If you declare a new member in the derived clagslths the same name as a member of the
base class, you hide it. It is still accessiblegsiome syntactic tricks, but if you did it
accidentally, you may get some tricky errors.

In C++0x, if you declare the derived class with é&xgl i ci t specifier, you will have to add
thenew specifier to any member declaration that hidestdree name in the base class. If
you add thenew specifier to a member that does not hide a nartteeibase class, or if you
forget to add it, you will get a compile-time errdrthe declared member hides a name.

2.1.4 Examples
A brief example follows. Given the base class,

cl ass Base

{
public:

virtual void function();

106

typedef int T,;
1

we can derive a new class,

cl ass Derived explicit: public Base

{
public:

/1
b

If we declare a method in th#er i ved class
virtual void funtion() override;

we get an error message because of the misspealied, lbecause the new method does not
override any method of tHgase class. If we declare a new method

void T();

we will get an error, because this declaration $ithe namd from the base class. If it is our
intent, we have to write

void T() new,

2.2Constructors
Even the rules for the constructors have been subjehanges. The basic limitations
concerning the call of another constructor of thme class or the constructor inheritance
have been alleviated.

2.2.1 Call of another constructor of the same class
There is no way to call another constructor ofdhme class to perform a part of the
initialization in C++03. If you have a common parimore than one constructor, you have to
extract it into a private method and to call itfrall the constructors that use it.

C++0x allows one constructor to call another oreecall it, you have to write the constructor
call in the initializer list of the calling constritor, in a similar manner as the call of the base
class constructor. A brief example follows:

class X

{ |
int x, vy;
public:
X(): x(0), y(0) {}
X(char* text): X() {cout << text << endl;}
3

Both constructors initialize the data members bhpeg moreover, the second one prints the
text.

2.2.2 Constructor inheritance
Constructors are not inherited in C++03; insteld,derived class constructors call one of the
base class constructors. In C++0x, you may demtaatdatl the constructors of the base class
are inherited. This is done by thei ng declaration:

107

class Y: public X

{
public:

using X :X;
1

There is no way to inherit only one constructoselected ones. You have to inherit all or no
one.

2.2.3 Explicitly defaulted constructors
If you do not declare any constructor in a cldss,dompiler declares, and if necessary even
creates the default constructor. If you decladeagt one constructor, the compiler will not
create any one. This can be changed in C++0x. Yayask the compiler to generate the
default constructor using the syntax

class S

{
public:
S() = default;

b

The same syntax applies for some other special raefabctions, viz. for the copy
constructor, the destructor or the copy assignropetator.

2.24 Member initialization
The new version it the C++ language shall allowrttenmber initialization to be written in the
member declaration. Thus, the following will be reat:

class Y. public X
{

int n = 6;
[/

b
This initialization will be performed by any consttor.

2.3 Deleted member functions
One the interesting feature of the C++0x is thesjimlgty to delete a member function. The
syntax is similar to the explicit declaration oéttlefault member function, but it uses the
del et e keyword. The deleted function may not be callexy; attempt to do it will cause a
compile-time error. This feature may be usefuladid some special member functions that
would be generated by default. E.g., the non-colgyelass may be declared in C++0x as
follows:

cl ass CopyMeNot

{
public:
CopyMeNot (const CopyMeNot & = del et e;

108

CopyMeNot (const CopyMeNot &&) = del et e;
CopyMeNot & oper at or =(const CopyMeNot & = del et e;
CopyMeNot & oper at or =(const CopyMeNot &%) = del et e;

b

This feature may be used for some special effeagsto prevent the function to be called
with all argument types except one:

class IntOnly

{
publi c:
void f(int);
tenpl at e<typenane T> void f(T) = del ete;
1

This will prevent the compiler to do any parametemversions, because the template
instantiation would be used instead — and the tatap$ deleted.

3. INITIALIZATION
The C++03 uses different syntax for the initialiaatof the so called POD-types (arrays and
structs in the C-style) and different syntax fa thass objects and built-in types. The C++0x
brings uniform initializer syntax and the way tdtialize the containers with the array-like
syntax.

3.1 Uniform Initialization
The new syntax for the initialization is based loa list of inicializers, i.e. on the syntax of the
array initialization. The initializer is encloseatthe brackets:
cl ass Test
{
i nt nmenber;
publi c:

Test(int value) : menber{value} { /* ... */ }
/1

The instance if th&est class may be initialized as follows:

Test test{6};

or

Test test = {6};

The same syntax may be used for the POD-types/&arad C-style structs), too.
3.2Initializer List

The new container clasgs d: : i nitializer_list<T>, declared in the

<initializer_I|ist>header, may be initialized by the initializer kdtthe form
{value_1, ... value_n}.

109

auto x = {1, 2};

will be of the typestd: :initializer_I|ist<int>and will contain the given values.
Any class, which has the constructor of the stifiializer_list<T> type, may be initialized by
the initializer list. This is the case of all th&lScontainers\{ect or <>, queue<> etc.)

The braced list of coma separated initializers aggyear in the function argument list, in the
return statement, on the right hand side of theyasgent operator, as an initializer in thew
expression and in some other contexts. Neverthatassiot considered to be an expression
ofthestd: :initializer_Ilist<T>type,thus it may mot appear in more complex
expressions.

4. FUNCTION DECLARATIONS AND LAMBDA EXPRESSIONS
Lambda expression is an old functional concept appg in the most common contemporary
programming languages recently. In fact, it isiafdform of the function declaration that
may be used as a function argument, as a membiafiagtion etc.

4.1 New function declaration syntax
To start the function declaration with the retuype is not always suitable; especially
template function return type may depend on tharaemt types. To resolve this, a new
(alternative) function declaration syntax was idtroed:

- Theaut o keyword stays instead the return type.

- Identifier and parenthesized parameter list follomvasual manner.

- The return type specification stays behind the arrow.

- If the declaration is the definition, the normahétion body follows.
An example follows:

tenpl at e<typenane T, typenane U>
auto f(T x, Uy) -> decltype(x+y){return r+y;};

Note thedecl t ype() specifier in the return type declaration. Thigésv to C++0x. It
deduces the type of the expression in the parezdgheasd may be used in declarations.

4.2 Lambda expressions
Lambda expression starts with the lambda introdwelich may be of the forrn] . Next is
the parameter list in usual form. This “lambda le¥éaday be followed by theut abl e
keyword. Next is the > arrow followed by the return type specificatiome flast part is the
lambda expression body (i.e. the function bodyhe Tambda introducer may contain the so
called capture list, i.e. the list of all local \adsles in the enclosing scope that are used in the
lambda expression body. It specifies which variableaptured by value and which one is
captured by reference.
An example follows:

auto f =[=]() ->int { cout << "hello" << endl; };
The = in the lambda introducer declares that allltical variables are captured by value. The

f variable will be of an implementation defined slégpe that has an overloaded function call
operator. Thus, this function may be called by ngitsimplyf () ; .

110

Lambda expression can be implicitly converted tmgo to function with the same signature.
Thenut abl e keyword, if used, forbids the changes of the lecgdies of the local variables
captured by value.

5. SHORT REVIEW OF SOME OTHER NEWC++0x FEATURES
We discussed selected news in detail in the preweations. Here we give a very terse
synopsis of some other changes expected in thes@ndard.

Thet hr ow specification in function declarations will be depated (even thouch it
will be included in the standard); new specificafivoexcept , will be introduced
for functions that do not throw exceptions.

Range baseflor command (a loop iterating through a container) gl added.
Theexpl i cit keyword may be used not only in the constructatatation, but in
the conversion function declaration in the C++0g.y&du can expect, it will prevent
the compiler to use of this conversion tool for litip conversions.

Attributes like[[carri es_dependency]] oral i gnas() may be used in
declarations. Attributes specify additional infotioa for various source constructs
such as types, variables, names, blocks, or tri@mslanits.

Theaut o keyword will mean the storage class specifier mpeminstead, it is used
either in the variable declaration where the coarghould infer the variable type
from the initializer type, or in the new style fuilon declaration to denote that the
return type follows the parameter specification.

R-value references (declared using&8emodifier) are introduced.

Thenul | pt r constant of the predefined typed: : nul | ptr _t representing the
null pointers should be used instead ofXkk L macro.

Theexport templates will be omitted. This keyword will besegved “for further
use”.

Theext er n template specification is introduced. This speatiion will prevent the
template instantiation.

Template aliases, i.e. the declaration oftthpedef templates, will be added.
Variadic templates (templates with variable nuntdfggarameters) may be used.
New container classes includingor der ed_set andunor dered_nul ti set,
unor der ed_map andunor der ed_nul t i map will be added to the STL. (Those
are the hash table implementations.)

Support for multiple random number generators pcoduuniform probability
distribution and “engines” generating a set of pfagbd probability distributions will
be added to the STL.

Multiple auxiliary classes were added to STL.

Data typed ong | ong, unsi gned | ong | ong, new character types and headers to
treat integer types (according to the C standadyBl added, as well as the tools to
access the computational environment. Rules fomtiegral promotions will be based
on the conversion ranks of the integral types.

String literals supporting the UTF-16, UTF-32 andey Unicode formats will be
added.

Operators for the programmer-defined literal déom will be added. (It will be
possible to define the suffix for the definitioretbhort constant, e.g.)

In theenumdeclaration, it will be possible to specify areigtal type as the
underlying type. The variables of thenumtype will be stored with the layout of the
underlying type.

111

- New forms of theenumdeclaration will be available. Tlnum cl ass andenum
st ruct declarations will introduce theeoped (strongly typedenum. The
enumerators of this type will have to be qualifigdthe type name using the
operator and no implicit conversion to integrala@gpill be provided. Note thahum
cl ass andenum st ruct should besemantically equivalent.

- Multithreading support will be part of the core dmrage. It will be based on the
st d: : t hr ead class, mutexes (represented byshd: : nut ex andst d: :
recur si ve_mnut ex classes) and other synchronization facilities thedpromises
and futures representing the not yet finished cdatmns.

- Thet hread_| ocal storage class specifier will serve to declareatirepecific
static data.

- New classst d: : uni que_pt r for the smart pointers should be introduced.

- Thestd:: auto_ptr<>template, thst d: : unary_functi on,
std:: binary_functi on and some other auxiliary classes should be dejad:ca

- Alternative integer types (t 32_t etc., described igi nt t ypes. h>) according to
the current C standard [3] are introduced.

Some features, included in the previous standaydgsals, will not be included:

- Concepts (probably not yet finished),

- decimal types,

- special mathematical functions in the like the Béfisnctions, Legendre polynomials
etc.

6. C++0x AND THE PROGRAMMING PRACTICE
The new features introduced by C++0x may be dividén several groups.

6.1 Completing the missing features
Some standard library classes, e.g. the hash tatdes intended, but not included in the
previous C++ standards, because their proposahotanished in time. The fact that they
are eventually supplied will close the gap in tteadard library that was filled in by several
proprietary — and thus mutually incompatible — ierpéntations.

6.2 Deprecated features of the previous standard
There were a few features of the C++03 that laghtdean code; some of them seemed to be
very useful in the early 90’s, when they were desty but proved to be rather problematic.
One the most apparent one was the freedom nottardeexplicitly the override of the virtual
function in the derived class. This could resulbbscure errors in the program behavior that
were difficult to find.
Other problematic feature is thér ow clause in the function declaration, because it
introduces strong code coupling. Changing the exaepthrown in one function could result
in sudden death of the whole program, becauseptgfeation of the thrown exceptions was
not changed in some other function calling the firse.
These features must be kept for the backward cobilggt but should be prevented in the
new code.

6.3 Featuresincreasing the programmers comfort
Language features like tlaeit 0 keyword denoting that the compiler should infex tipe of
the variable, the lambda-expressions etc. simpusease the programmers comfort. They
enable terser, more concise expression of the gnager’s intentlf carefully used, they may
lead to cleaner, easier-to-understand and easmatotain programs.

112

6.4 Backward compatibility
This is probably the most important aspect of tee standard. The standardization
committee declares that the new C++ will be “alma®0% compatible with the C++03. It is
clear that introduction of the new features ordktensions of existing ones will not cause
problems in programs adhering to the C++03 standdrelaut o keyword was in fact never
used, thus the change of its meaning would causeunbles, too.
The export templates omission will be more problémaecause some compilers supported
it recently. This will probably raise the necessayewrite some proprietary header files. The
deprecation of the throw clause in the functioniaation will — may be — change the
programming practice, but the compilers will havestipport it for some time, because it was
in use for a long time and in some cases it wasired by the previous standard.

7. CONCLUDING REMARK
This article is based on the draft of the standidmas some features described here may
change in the final release. Nevertheless, it \8oals that the new C++ version will be easier
to use for experienced programmers. On the othed,a++ is probably the most
complicated programming language ever used; sortteeathanges introduce new
complexity to it.
Up to now, only few compilers implement the newtieas — and of course no one implement
them fully. It will take several years to the fiipact of the changes.

Acknowledgement
The work on this article was supported by grants Ib808015 a SGS 11/167 of the Ministry
of Education, Youth and Sports of the Czech Republi

REFERENCES

[1] ISO/IEC 14882:1998. Programming Languages —.C&enéve: ISO/IEC 2003.

[2] Working Draft. Standard for Programming Langeadgr+. Doc. No. N3242. Geneve:
ISO/IEC 2011. Available at

http://www.open-std.org/jtcl/sc22/wg21/docs/pa@$l/n3242.pdf
[3] ISO/IEC 9899:1999. Programming Languages -@eénéeve: ISO/IEC 1999.

[4] Stroustrup, B., Ellis, M.: In 1990;he Annotated C++ Reference Manual. Addison-
Wesley 1991. ISBN 0-201-51459-1

113

