COVERINGARCHITECTURAL PROBLEMS OF SOFTWARE
DEVELOPMENT OUTSOURCING

AzizAhmad Rais

University of Economics, Prague, Faculty of Infotiosiand Statistics,
Department of Information Technologies

W. Churchill Sq. 4, 130 67 Prague 3

arais@seznam.cz

ABSTRACT:

In the modern world, developing information systehas become more difficult than ever

before, and without properly proposed and agreekitacture it is impossible to develop and

outsource software development projects. To outsosoftware development it is necessary
to have the tools and language to communicate dasgand business needs. Software
architecture is the right tool to prevent some sypéfailures and to provide the right means
for communicating the shape of the end products faper will cover how to develop and

proceed with successful design of architectureguamagile methodology.

KEY WORDS:
Outsourcing, architecture, agile development

1 INTRODUCTION

It is important to understand why architecture isic@l for outsourcing software
development. A successful project needs teamwopkewvent and reduce the risks of failures.
It is very important that teams communicate witbheather in order that the components and
the interfaces developed by different members eftdam interact with each other without
bugs and errors. To prevent errors and bugs géessary to describe and model the system.

However, there are other considerations to takeastount as well. Applications should
be modular, flexible and should have layers fortdseseparation and organization of
components. During the post-outsourcing life cybkere can appear other types of problems
with applications, like maintainability and extdoisty, among others.

All these problems need to be discovered during dhtsourcing phase of software
development and solved or eliminated by using sarivarchitecture.

2 ARCHITECTURE OF INFORMATION SYSTEMS

Architecture of information systems is a concept thany people either do not understand or
expect a lot from. Some people do not even undaidta importance. It is worth describing
what software architecture is, why it is good tdirte the architecture of a system before
developing the system itself and what would happinvere not defined.

Information system architecture is about collectiddferent views from different
perspectives like business, infrastructure, teamllogical view, data flow, data domain and
processing or interaction. Each of these views rde=t how the system looks from the
corresponding viewpoint. Each view then defines seé of components that makes the
system serve the request. Each view provides aifispeollection of logical components
organized through the layers and tiers, and destripecific interactions between the
components.

All the information given by these views are usefoi many aims, e.g. for better
troubleshooting, support, implementation respotisds, outsourcing and deployment.

122



Defining the architecture is important in orderni@et non-functional requirements that
are important for the life cycle of the system. ®owf them include maintainability,
extensibility, security, performance, portabilipyatform independent and scalability.

Some of the non-functional requirements are diffitm measure. It is necessary to write
a criterion that will help us to accept the systesing developed by a third party. A criterion
that is not defined correctly can sometimes limevelopers during development. Having
unclear criterion needs negotiation and allows pticas causing a delay in software delivery.

Although information system architecture can becdj@el from different viewpoints, it is
still important to identify the level of the dewiin information system architecture. Today’s
information systems consist not only of one compbner service but of many more.
Examples could be the construction of a data waredhmr the distribution of content for
IPTV.

For designing information systems it is useful tstidguish three levels of abstraction
and granularity to make agreement and expectatrons the proposed architecture easier for
both client and vendor.

1. Enterprise architecture describes the complete IT system of a companygahdth the
full picture of infrastructure, systems and busigsrvices.

2. Information system architecture describes the system components and their ini@nact
and the services that the system provides. Thespauents are organized in different tiers
and layers.

3. Information system design concerns applying design patters to the componants
their interfaces described in the higher level.

Outsourcing software development is about devefp@n information system by a third
party. This article describes the second leveh@irmation system architecture and identifies
how to achieve and design such architecture.
The first step of developing the architecture ofirformation system is gathering all the
necessary requirements. This first step can beelivinto two types of requirements.
Functional requirements should describe what the system should do in dadprovide
a service to the end-user. Usually these requir&sream be gathered in the form of use cases,
but there are also other methods and standardsBHN or using sequence or activity
diagrams. These requirements can be designed bysnoédools likeEnterprise Architecbr
Magic Draw. Describing the scenarios by means of text doctsrieralso possible.
Non-Functional requirements are usually considered as technical requireméntshey
can stem from functional requirements as well.

2.1 Architecture development methodology

This article will not cover business requirementthgring and analysis methodologies.
Nevertheless it should be carefully considered winathodology to use to develop the
architecture as part of the project. However, efdeveloping the system architecture we
should first develop the guiding methodology. Sn tae agile methodologies have proven
themselves as sufficiently effective and robust rapgh based on iterative software
development.

According to the Rational Unified Process (see,[8bftware development consists of
four phases: inception, elaboration, constructiod @ansition. From the outsourcing point of
view the transition phase is not of particular iegt. The construction phase includes also
quality assurance activities since they are tighthypled with the implementation process.
Moreover, splitting the elaboration phase into dhehitecture and the design phases has been
proven advantageous, for instance, it facilitate®arly planning of iterations. Because term

123



inception, coined by RUP, has not become widelyduseéecided to call this phase analysis,
since it better describes the main activities pengéd within it.
In principle, there are four possible start poindsn which to begin planning iterations.

1. Beginning to iterate in the requirements phase: The business analyst, project manager
and client together should prioritize the requiratee Based on this prioritization, the
requirements should be divided into iterations.

2. Beginning to iterate in the architecture phase: This approach assumes the business
requirements have already been gathered and adalyken, the software architect and
the project manager plan the iterations based @®inésss requirements, component
dependencies, technologies used, layers and Tieesarchitects deliver their architecture
to the designers in iterations so that they cargddbe components.

3. Beginning to iterate in the design phase: This approach assumes the business
requirements have already been gathered and adalgmé the architecture has been
developed. The designers deliver their design permponent or per set of components
and layers to the developers. The software ardhitlssigner and project manager plan
the iterations in this approach. Of course, otlatigs can be involved too, but they are
optional and need to have technical knowledge.

4. Beginning to iterate in the implementation phase: All the previous phases of the
development life-cycle have been already compléelée. iterations in this approach are
based on the delivered design, architecture andindss requirements. The
implementation of the whole system is built upoa tésults of the previous phases.

The later we start with the iterations the farther are from the real agile methodology and
the closer we get to the waterfall one. The eawlierstart the bigger is the chance that we
identify all types of failures sufficiently soon.

Therefore my suggestion is to start with the iiera in the analysis phase. There is often
a need for different insights, because describlhtha information in one view and diagram
would make the architecture unclear and impossdtescribe.

One of the most important rules for the architextis to be sure that our proposed
architecture meets all the requirements. Therefoteneed to know the scope of the system
and all the requirements. If you are missing soatiirements, you should take the role of
the client into account and make appropriate assong Sometimes you can reveal new
requirements. It is also very important to keepnmnd that the development of the
architecture requires a consistent terminology,ingroonventions and views. Let’s define the
type of information the views can provide to thewer. The 4+1 view (see [1]) is limited and
doesn't cover how to solve problems connected witme of the views. It is therefore
difficult to say where and how these problems carstived, and it is not clear whether the
4+1 view allows solving them. The sole usage of 43d views makes solving all the
architectural problems difficult.

Let’s outline briefly all views through which thechitecture can be described.

1. Businessview: This view describes the business requiremengeieral. The analysis of
the requirements is out of the scope of this viélis view contains a list of business
entities and the relationships between them (basimatity model). This model is not
meant as a physical model describing how the degasaved to a persistent storage,
instead, it focuses on identifying the businessptiner words, how the business data
should be put together. All the entities and relahips between the entities are parts of
the entity model.

124



2. Logical view: This view describes the layers, tiers and impartzaomponents. All the
business and technical components (and possiblgrotbonstituting the information
system) should be identified in this view.

3. Technology view: This view covers technologies, frameworks andrdthparty
components as well as servers used for buildingststem under development. This
view can be described in the form of a diagram thatctly maps each component and
layer in logical view to the corresponding techmplo

4. Process view: This view describes the interaction between layerd components and it
is used to describe all processes. In order todaaaluplicate description of processes it
is recommended to describe only one representisggtioup of similarly described
processes.

5. Integration view: This view describes how to integrate all extesyatems. In this view
we concentrate on identifying design patterns,netdgies and ways of integration (e.qg.
batch-like, synchronous or asynchronous). Hens, also necessary to consider message
formats, data types mapping and support of theesysafter deploying it to the
production.

6. Domain view: This view identifies the object domain model whsa the entity model.
The domain object model describes a representafidhe business entity model as an
object model. (The physical data model is creatatie data view.)

7. Data flow view: This view is useful when building a complex systeomposed of the
services provided by other systems. Here, the ftataats are described along with
specifying sources and destinations for the idextifata.

8. Physical view: This view shows how the system will be deployaa] shows the runtime
environments of the system. This view has to pmevitdhe sizing of physical
environments, how to integrate the whole runtime/irenment into the network
topology. This view also includes a descriptionhofv the system is secured from the
network point of view, how disaster recovery isveol, how the scalability is achieved,
how those data is archived and how the data bacis performed by the information
system. This view can also describe how to morther network and the hardware of
each system. Furthermore, this view determines riggcsolutions for low-level
components (the operating system, the hardwaré¢henaetwork), denial of service, etc.

9. Data view: This view describes how each business entity Wl persisted into a
persistent storage. The physical view can be doneeptually only and the details can
be added in the detailed design phase later on.

10. Implementation view: Here, all the business components are identifiasked on the
functional requirements. The flow of interactioretveeen business components follows
the process view. The implementation of the busirgsmponents is done iteratively.
New business components can be added in eachadteeatd the interaction between the
components is depicted by sequence diagrams inr aedshow how the functional
request will be processed.

2.2 Adgile software architecture development

Another principle of the agile approach recommeddisig some activities of one phase in
parallel with activities from other phases. In otheords, we start the next phase of the
development life cycle before the other phasenislied.

After the business requirements are gathered afwdebthe analysis of the requirements
is finished, you can do the following on each view:

125



1. Business view: In this view we can describe high-level use ca$ée exact number of
use cases depends on the business requiremensianaly

2. Logical view: In this view we can identify the components thapport the business, the
supportive components, e.g. for logging, caching,onitering, configuring,
authenticating, access control, auditing, filteritigacing and validating. You can also
identify the layers and the tiers.

3. Technology view: In this view a discussion on technologies care talkace even before
the requirements gathering completes. Also, basethe logical view, the technology
used in each layer and tier should be identifiedr €ach technical component, an
adequate framework or third party components shbeldientified.

4. Process view: In this view the process between layers and wars be specified. The
process is actually performed by many componergglénthe layers, but it is very
important to underpin here only the complex proessand to show the entry and exit
points of each layer and tier for the others.

5. Integration view: In this view the analysis of external systemgijrtlilata and message
types as well as availability of their interfacé®sld be done.

6. Domain view: In this view we propose the first draft of thentiin object model.

7. Data flow view: In this view we describe the data formats alonth whe sources and
destinations for the identified data.

8. Physical view: In this view we can be identify available hardeiaesources and the
network bandwidth as well as how the cluster asdster recovery will be solved.

9. Data view: In this view, we identify the possible data modeld the conceptual tables
and relationships.

10.Implementation view: This view cannot be started before the businessirements
analysis is finished. Here, as mentioned above,need to describe the business
components.

What to do after the business requirements anablyseady? After the analysis review is done
the check whether all requirements have been nwetidibe performed. Then we finalize the
architecture and specify which business comporsdrdald be implemented per iteration.

3 SUMMARY

First, the paper distinguished the three levelsaldtraction and granularity to make the
agreement and expectations from the proposed actine easier for both client and vendor.
From the four phases defined in RUP, i.e. the iticap elaboration, construction and
transition, the elaboration phase was split todatohitecture and design phase for facilitating
early planning of iterations. The four possiblertstaoints from which to begin planning
iterations were identified and analyzed with theoramendation to start the iterations as soon
as possible.

To design the architecture better it was suggesteddescribe the system under
development from ten viewpoints. Each individuawiwas briefly described along with the
corresponding processes. Thus, when outsourcingva@ development, this architecture
development methodology provides the guidance fegotiating the solution, which the
vendor should deliver. Analogously, the customer check the software deliverables more
efficiently and eventually reject or accept thewiables.

126



REFERENCES
[1] Philippe KRUCHTEN:Architectural Blueprints—The “4+1” View Model of Bware

Architecture IEEE Software, 12(6), Nov. 1995, pp. 13-16.
[2] Philippe KRUCHTEN:The Rational Unified Process: An Introduction (Edition).

Addison-Wesley Professional, 2003. ISBN 0-321-19470

127



