
 110

PROGRAMMING LANGUAGE C.C

Vojtěch Merunka

Czech University of Life Sciences Prague, merunka@pef.czu.cz

ABSTRACT

The C.C programming language is outcome of our research and has been implemented

in the system analysis and modeling tool Craft.CASE of a British software company.

This language is designed for automated modeling such as simulations, MDA support,

domain-specific capabilities, flexibility, consistency and integrity checking, reporting

etc. Interesting side effect of this programming language is its feasible application as a

first teaching language in algorithmization and programming courses. Author regrets to

announce this paper is published in English. It is caused by the National research and

development policy issued by the Research and Development Council of the Czech

Republic, that discriminates the Czech language.

KEYWORDS

scripting languages, C.C language, Craft.CASE tool, design patterns, re-factoring, class

normalization, UML

INTRODUCTION

In this paper, we introduce the C.C language, show its basic concepts, syntax and

demonstrate the way in which it cooperates with the Craft.CASE modeling tool.

The C.C language design is an outcome of our research. Interpreter of this language has been

recently included into the Craft.CASE modeling tool developed by the British Company

CRAFT.CASE Ltd. [2] This company thus takes all activities which were connected with the

Craft.CASE and the BORM method in the past, including their future advancements.

SCRIPTING AND AUTOMATED MODELLING

There are several ways how to classify these techniques. For example, Jean-Marc Jezequel

[7,8] presents the following classification:

• General purpose programming languages - Java, VB, C++, C#, etc. Rules and

scheduling are implemented from scratch using the programming language.

• Generic transformation tools - XSLT transformation and graph transformation tools.

• CASE tools scripting languages - for example Arcstyler, Objecteering, OptimalJ, or

Fujaba.

• Dedicated model transformation tools - for example OMG QVT style.

• Meta Metamodeling tools - for example MetaEdit+, XMF-Mosaic, or KerMeta.

The Craft.CASE modeling tool provides model transformation via the C.C interpreter. Our

approach respects categories 1 and 3, but is more universal, because it enables not only

scripting and rule implementation. In addition, the C.C interpreter is able to perform all

operations on model (including simulations, refactoring, new diagram creation, etc.), that are

executed manually by users from graphical user interface. On the other hand, the language is

not standardized on the present, thereby it is not possible to share the source code with other

modeling tools.

 111

The C.C language is a functional programming language with PASCAL-like syntax with

several imperative constructs and some features coming from languages PROLOG, Erlang,

Ruby, Python and Smalltalk. It has an interpreted programming environment. C.C is used for

following purposes:

• As a scripting language. Procedures in C.C are able to pass through project database

and compose miscellaneous documentation reports.

• Precise process simulation. Procedures in C.C can compute various simulation data,

control simulation flow, etc.

• Automated manipulations with model (e.g. applying design patterns, refactoring and

class normalization).

• Consistency and integrity check of project database. This feature covers the same

functionality as the OCL.

• Data export in different formats (namely XMI and binary formats of other CASE

tools).

• Data import from different data sources (e.g. ODBC, CSV etc.).

LANGUAGE ARCHITECTURE

The C.C interpreter consists of workspace (expression evaluator), console, module browser,

time profiler and debugger (for tuning and tracing). The language has following features:

• The C.C architecture consists of modules having functions. Modules are both system

built-in and user-written.

• Variables must begin with capital letters.

• Built-in values are true, false, nil, e (Euler's number), i (purely imaginary number), pi
(Ludolf's number), infinity, tiny (infinitesimal zero) and a lot of functions in

miscellaneous modules.

• The only types are:

1) Symbol (atomic textual values beginning with non-capital letters).

2) String of characters written in double quotation marks.

3) Number (incl. complex numbers).

4) Date.

5) Time.

6) Logical value as predefined symbols true and false.

7) nil.
8) Collection of elements of any type. There are three types of collections: list, set

and dictionary. Elements of collections are accessible through box brackets.

9) Function as lambda-expression [5] that is written in curly brackets. To illustrate,

lambda-expression (λx λx | x
2
 + y) is written as {:X , :Y | X ^ 2 + Y}.

Following line of the C.C code implements a hello world program.

console:print("Hello world!").

 112

console and workspace

debugger and module browser

profiler

 113

Functions

Each C.C function must be a member of some module. Therefore previous example of a hello

world program working with module named console and function named print can be written

as follows.

| M , F | # declaration of variable names
M := console. # assigning symbol "console" to var "M"
F := print. # assigning symbol "print" to var "F"
M:F("hello world!"). # function call

User-defined functions are represented by function expressions stored in variables. For

example function yxy)F(x, +10= can be implemented as

F := {:X , :Y | 10*X + Y}.

This function F can be applied on arguments via round brackets as for example F(3,4).
However, this function call can be used directly without the need to store it in any variable,

like

{:X , :Y | 10*X + Y}(3,4).

Additionally, there are yet some advanced features related to default values of lambda-

variables, order of parameters in function call and possibility to call function with incomplete

set of parameters.

Collections

Following example shows declaration of a list L and a dictionary D.

 L := [10 , 20 , 30 , 40 , 50]. D := [first := 10 , second := 20].

Then we can access elements of these collections as follows.

 L[1] = 10. L[2] = 20. D[first] = 10. D[second] = 20.

We have have defined nine operators for comfortable collection processing. Nonetheless these

operators (and all other C.C operators) are interpreted as functions as well.

 • adding: collection add element, collection add-all collection.

 • removing: collection remove element, collection remove-all collection.

 • set operations: collection intersection collection, collection union collection.

 • testing: value in collection.

 • selection: collection // function.

 • projection: collection >> function.

Selection and projection is explained in this example:

[10,20,30,40,50] // {:X | X > 20} = [30,40,50].
[10,20,30,40,50] >> {:X | X + 1} = [11,21,31,41,51].

 114

Craft.CASE model elements behaves as collections as well. For example, if there is an

element AClass, then the expression AClass[prop-name] := NewValue changes a value of the

property prop-name of this element.

Control structures

Control structures are realized by operators, but they have internally the same interpretation as

functions. They are:

1) if logical-expression then function [else function] .

2) for collection do function .

3) from value to value [by value] do function .

4) repeat function until function-with-logical-expression .

5) while function-with-logical-expression do function .

Following two pieces of code shows the same iteration:

 for [10,20,30,40,50] do {:X | console:print-nl(X)}.

| X |
X := 10.
while not(X > 50) do {console:print-nl(X). X := X + 10}.

Code examples

The C.C language is a universal programming language. Here are two small examples of

well-known algorithms.

recursive definition of factorial #####
| Factorial |
Factorial := {:X | if X = 0
 then {1}
 else {X * Factorial(X - 1)}}.

Eratosthenes' generator of prime numbers #####
| Max , Non-primes , Primes |
Max := integer(dialog:request("maximum number?")).
Non-primes := set:new().
Primes := list:new().
from 2 to Max do {:N | if not(N in Non-primes)
 then {Primes add N.
 from N
 to Max
 by N
 do {:N1 | Non-primes add N1}}}.
console:print(Primes).

Path expression

Path expression (using operator „->“) is an implementation of the graph traversing algorithm.

It contrives to collect neighbors of an element or a collection of elements in the project

database with respect to the Craft.CASE metamodel. This metamodel is based on graph

concept consisting from nodes and links. Each link is one-way oriented and has one source

 115

node and one target node. The whole Craft.CASE project is a node as well. If this project

consists of diagrams, they are nodes linked to this project. If a diagram consist of elements,

they are nodes linked to this diagram. Of course, miscellaneous relations between elements in

particular diagrams are links between corresponding nodes too.

To illustrate, if there is a class Person, we can access all methods of all classes inheriting from

this class as follows:

Person -> "subtype" -> "Class" -> "Method".

Modules

The C.C interpreter has several built-in modules concerning in mathematics, simulation,

diagramming, data input and output, reporting etc. It is possible to declare, that the C.C

interpreter offers the same behavior as the human interface of the Craft.CASE including new

diagram creation, symbol editing etc.

MODELING EXAMPLES

Our experience denotes the fact that the design pattern technique, the object normalization

technique and refactoring technique share common principle of model transformation. Hence

all these techniques can be automated through C.C code with a project database. In this

chapter we demonstrate practical examples of this idea.

Refactoring

It is possible to define refactoring as any sequence of system transformations, where behavior

of the system remains unchanged. (An exception might be for instance a slightly different

delay between user impulse and subsequent system response, nevertheless from user point of

view refactoring has actually no importance.) From system modeling aspect, refactoring is

performed for optimalization, reusability and maintainability reasons [8]. Classical book on

refactoring is [3].

In the following piece of code we present an interactive algorithm for interactive creating a

new super-class to selected classes from a conceptual class-diagram.

| Classes , NewClass |
which are classes from selection?
Classes := editor:selection() // "Class".
if list:is-empty(Classes) then {return dialog:warn("No classes selected!")}.

create new class, name it and add it into diagram
NewClass := project:new-node("Class").
NewClass[name] := dialog:request("New class name?").
editor:add-element(NewClass).

assign new class as superclass of selected classes
for Classes do {:Class | editor:add-new-link(Class , NewClass , "Supertype")}.

 116

Third normal form example – initial situation

Third normal form – interactive dialogues

Third normal form - result

Design patterns

Design patterns are proven solutions to design problems. A design pattern is a template for

how to solve a problem. Design patterns are a technique for system design. Using of design

pattern on some particular solution is time (and also money) saving. More detailed

information about design patterns for software systems development and their classification is

in book [4].

Currently all design patterns from this book are implemented as interactive functions in the

C.C language. Moreover, the exploration of business process patterns and their subsequent

implementation has been started. Following piece of code shows the implementation of

Adapter pattern.

 117

| Classes , Adaptee , Adapter , AdapterLink , Method |
which are classes from selection?
Classes := editor:selection() // "Class".
if list:size(Classes) <> 1 then {return dialog:warn("Select one class to be adapted!")}.

select adaptee class
Adaptee := Classes[1].

#create and link adapter class
Adapter := project:new-node("Class").
Adapter[name] := "Adapter".
editor:add-element(Adapter).

AdapterLink := project:new-link(Adapter, Adaptee , "Composition").
AdapterLink[name] := "adaptee".
AdapterLink[cardinality] := "1".
editor:add-element(AdapterLink).

Method := project:new-node("Method").
Method[name] := "Request()".
project:new-link(Adapter , Method, "ownership (conceptual)").

Object normalization

Object normalization is similar approach to the relational data normalization. It is applied to

object-oriented data model. There exist several approaches to object normalization. The most

advanced information is in book by Scott Ambler [1], where object-oriented data modeling is

discussed. In our technology, we use the Scott Ambler's three levels of object-oriented model

normal forms. [9] (It is obvious, that ''standard'' relational normal forms are implementable by

a C.C code as well.) Following piece of code shows our implementation of the third normal

form.

| Classes , OldClass , NewClassName , NewClass , AttributeNames ,
 RemovedAttributes , Link |
which are classes from selection?
Classes := editor:selection() // "Class".
if set:is-empty(Classes) then {return dialog:warn("No classes selected!")}.
OldClass := set:any(Classes).

create new class, name it and add it into diagram
NewClassName := dialog:request("New class name?" , "New Class").
NewClass := project:new-node("Class").
NewClass["name"] := NewClassName.
editor:add-element(NewClass).
editor:add-new-link(OldClass , NewClass , "Composition").

select instance variables to be extracted from an old class to a new class
AttributeNames := dialog:choose-multiple

 ("Select attributes to be extracted..." , OldClass -> "Composition" >> {:X | X[name]}).

#remove them from an old class and remember them

 118

RemovedAttributes := dictionary:new().

for (OldClass -> "Composition")
do {:Composition |
if Composition[name] in AttributeNames
then {project:remove-element(Composition).
 RemovedAttributes[Composition[name]] := element:target(Composition)}}.

#add attributes into a new class
for dictionary:keys(RemovedAttributes)
do {:Name |
 Link := project:new-link(NewClass, RemovedAttributes[Name] , "Composition").
 Link[name] := Name.}

CONCLUSION

The C.C language and Craft.CASE are instruments we use to support our research in area of

systems modeling. [6] This platform is able to solve many problems with interconnection of

business models and software models, business process simulations, step-by-step model

transformations, domain-specific capabilities, model checking an reporting etc. The author

would like to acknowledge the support of the research grant project MSM6046070904 of the

Czech Ministry of Education, Youth and Sports.

REFERENCES

1. Ambler S.: Building Object Applications That Work, Your Step-By-Step Handbook for

Developing Robust Systems Using Object Technology, Cambridge University

Press/SIGS Books, 1997, ISBN 0521648262

2. Craft.CASE Home Page www.craftcase.com.

3. Fowler M.: Refactoring. Addison-Wesley 1999. ISBN 0-201-48567-2.

4. Gamma E., Helm R., Johnson R., Vlissides J.M.: Design Patterns: Elements of

Reusable Object-Oriented Software, ISBN 0-201-63361-2

5. Hankin C.: Lambda Calculi - A Guide for Computer Scientists, Clarendon Press -

Oxford 1994, ISBN 0-19-853841-3

6. Liu L., Roussev B. et al.; Management of the Object-Oriented Development Process -

Part 15: BORM Methodology, ISBN 1-59140-605-6

7. Muller P-A., Fleurey F., and Jézéquel J-M.: Weaving executability into object-oriented

meta-languages. in S. Kent L. Briand, editor, Proceedings of MODELS/UML'2005,

volume 3713 of LNCS, pages 264-278, Montego Bay, Jamaica, October 2005.

Springer.

8. Sunye G., Pollet D., Le Traon Y., Jézéquel J-M.: Refactoring UML Models.

9. Vrany J., Struska Z., Merunka V.: Object normalization as the contribution to the area

of formal methods of object-oriented database design, in proceedings of the eighth

International Conference on Enterprise Information Systems: Databases and

Information Systems Integration ICEIS 2006, Paphos, Cyprus, INSTICC Press, 2006,

vol. 3, p. 471-474. ISBN 972-8865-41-4.

