
 156

EXPERIENCE FROM AGILE ADOPTION IN DISTRIBUTED

ENVIRONMENT

Jaroslav Procházka
Ostravská univerzita, Jaroslav.Prochazka@osu.cz

ABSTRACT:
There exist a lot of papers about agile development, its practices and comparison with

waterfall method in proceedings, books and Internet. Lots of them are only repeating the

principles, techniques or some specifics. This paper rather focuses on and summarizes

experience with small as well as large global sourced projects trying to run agile. We

summarize main reasons led us to develop agile and also typical impediments and pitfalls

during introducing agile way of working. Finally, we outline some techniques that work really

well in our environment.

KEY WORDS:
Agile development, agile techniques, experience.

1. INTRODUCTION
But to make short introduction for not familiar readers, we pinpoint main differences between

agile and rigorous waterfall based model. Readers familiar with agile principles can skip this

part. Agile development comprises several methods or frameworks, namely Scrum, XP, Lean

Software Development, Feature Driven Development, Crystal methods and others. People

working on these methods met in 2001 and form so called Agile Manifesto [1] defining

principles and values common for these methods. Basics are:

• Individuals and communication are more then processes and tools.

• Working software is better than tons of documentation.

• Customer should tightly collaborate with the development team.

• Respond to change is more significant than follow the plan.

 157

Figure 1. Agile manifesto

In Agile Manifesto, you can see stressed communication and cooperation among all people

(business and IT, within IT teams) and self-managed teams, where team itself make decisions

(no managers) to reach the final deliverable product. Next, it is the focus on continuous

delivery of valuable software and software as a primary measure of progress, not design or

requirement documents, which do not bring business value to the customer. Last but not least

is simplicity (avoiding the waste, e.g. extra features) in development and continuous learning

during the lifecycle. Of course, we can’t forget change tolerance and taking the requirements

change as an advantage for our customer, not as an impediment.

This can be taken as a short introduction into agile methods. Agile approaches occur as a

response to the waterfall and spiral based models that generate problems in reality. Just to be

sure that we are not blaming this model, we say, waterfall might work in environment where

requirements are stable, problem domain is really known, team is skilled and familiar with

technology, changes are small not affecting the architecture. Next chapter summarizes the

problems that led our teams to think about another approach to software development.

2. MAIN PROBLEMS
As we have mentioned in the introduction, there are several issues dealing with the old

fashion development model, that led us to thing of another way, how to develop software.

These are typical issues we have experienced in our projects:

• Never used features and required changes in these – effort needed to develop and

deliver features and changes.

 158

Figure 2. Features and their usage (source: [2])

• Projects haven’t met agreed time and budget – a few projects on time and on budget; if

so, then with a poor quality.

• Quality issues – lot of faults found by customer after release, poor performance or

other quality issues.

• Misunderstood requirements – self-interpreted requirements, functionality is

implemented in different way customer expects.

• Bad estimates for the whole project, for given phases (mainly the 2
nd

 part of lifecycle:

coding, integration and testing), for maintenance issues.

• Overloaded people – lot of things done mainly in the 2
nd

 part of the development life-

cycle, no time to solve structural issues – lot of workarounds introduced.

• Unpredictable events occur – not enough time to solve them, or too important that

impacts architecture, integration, requirements and testing. Discovered late in the

project.

• Squeezed time (or no time) of non-functional testing at the end of the project to save

time (to deliver on time).

These are the issues leading us to think of better, more effective and efficient development

model based on iterations and stressing communication. But there was one more outstanding

topic also really important: customers really want agile way of doing software! Now we know

the starting triggers for agile development in our projects. Let’s start the discussion of

possibilities in small Czech businesses.

3. SMALL CZECH BUSINESSES
For small Czech businesses is implementation of agile methods and practices easier than for

larger ones. The reasons are following:

• Smaller and co-located teams – people are mostly in the same room, know each other

personally, known their skills and previous work.

• Team members believe the champion that brings new way of working, if he or she is

senior team member (skilled architect, PM or company’s visionary).

• Communication is mostly not a problem – people communicate.

• Informal and valuable communication channels – informing each other, sharing

knowledge, solving problems during the informal “hallway” communication.

• Smaller projects – 3 to 9 people working on project.

• Teams have better contact with management – management is more informed,

managers knows well team members and can be easier convinced.

• Cross-functional teams – team members play a lot of roles (analyst, designer,

developer, tester), each team member does everything needed to achieve the target.

 159

Basically, these Small Business’ teams already uses agile techniques, but informally without

knowing it. Typical example of such used technique is pair programming for knowledge

sharing and problem solving, self managed and cross-functional teams – team have not only

responsibility but also authority to make decisions, daily meetings to synchronize the whole

team (but also informal). But in this case is much harder to involve customer, IT companies

usually develops systems for Small and Middle Business (SMB) and SMB employees have

usually a lot of work and are critical, so cannot be able fulltime onsite for development team.

4. LARGE GLOBAL SOURCING PROJECTS
Problems mentioned above are common in both, small and large projects. In distributed

environment occur also other problems because of geographically distributed teams and

remote customer. Following list summarizes additional issues in global sourcing model:

• Harder communication – the most important topic, distributed teams need to

communicate using expensive channels (phone calls, tele-conferences, video-

conferences or travelling), depersonalized communication.

• Subjective requirements interpretation – caused by hard or no access to the customer

and/or future applications users.

• Functional division of application – onsite team defines requirements and does

analysis; offsite team codes and performs testing (communication barrier => loss of

information).

Figure 3. Communication in global sourcing

• Micro-management – onsite tendency to manage offsite teams (detail plans and steps

from onsite managers), thinks stupid monkeys are offsite.

• Waterfall thinking – not existing cross-functional teams, analyst creates analysis

document and “throw over the wall”; designer creates design document based on this,

etc. (loss of information, knowledge, experience, common goal).

These are only the most visible issues we are experienced with in the global sourcing model

(sometimes with common root cause). The most important issue and the root cause of the rest

of the topics in the list is communication between distributed team members.

5. COMMON QUESTIONS, PITFALLS
There go a lot of stories and misconceptions around about agile approaches and techniques.

The one is that there is no documentation, then no analysis is done, it is suitable only for

green field development and small, co-located teams etc. This is not true! The main problem

is trying to understand new way of development with the old-fashioned mindset. The focus is

 160

not on the documentation but rather on activities that need to be done and the form of

capturing information is not so important. Really famous tools for this case are whiteboards,

flipcharts, post-it notes. Photos of drawings can be stored in the repository and serve as a

developer’s documentation. This can be accurate for the small and skilled team.

Second, analysis and design is done during every iteration, but only for the scenarios that are

in the scope of given iteration. We do not focus on analysis of the whole system to avoid

analysis paralysis. Rather, we choose only a piece of the system, so called scenario and

completely develop chosen scenario, see following whiteboard examples of architecture

model and storyboard of one scenario.

Figure 4. Candidate architecture (left) and story board (right)

Of course, also software tools are used but only in the case, where it is effective. For the large

distributed project is needed to use issue tracking tool like Jira, modelling tools like IBM

Rational modeller, building tool like Ant, Maven or team Wiki pages. The critical automated

part of the process is building and continuous integration. There is the use of software tools

must, because it is done very often. Daily builds with performed test suites gives the

developers quick and precise feedback.

6. EXPERIENCED PROBLEMS
In this chapter, we outline the main problematic parts during agile adoption from our

experience. As this experience is based on particular environment and working culture, for

different organization can occur quite different issues. So take the following list only as an

example of possible problems when adopting some agile principles and techniques, not as a

full list to follow.

Fundamental issue – mindset change and mentality

People try to perform iterative approaches and techniques with the old mindset. They say: “Of

course we do iterative development.” The result is 1
st
 iteration requirements gathering and

analysis, 2
nd

 iteration design, 3
rd

 iteration development, etc. But agile development is quite

different:

• Each iteration produces executable and tested build.

 161

• All the disciplines are done in every iteration (analysis, design, testing, development,

project management).

• We do scope management (see picture below); changes are welcome.

• We do only brief plan (road map) at the beginning, no huge upfront planning; detailed

planning is done only for given iteration (much shorter period).

• Teams are self-managed and cross-functional.

• And many others.

Figure 5. Traditional and agile triangle of quality

Traditional approaches gather all possible requirements upfront and try to estimate cost and

the date of delivery for the whole projects. This is very hard because we do not know the risks

and unpredictable events that can occur during the project. All these factors might change the

estimates dramatically. On the other hand, agile approaches agree the cost and delivery date

and try to implement as many features as possible, starting with the most important ones for

the business. Customer cannot define all three parameters. Team must define one of these

quality triangle parameters to assure quality of the overall product!

Basic presumption is also mentality of the developers and the customer. A lot of agile

methods have come from US. Czech programmers do not have courage to throw away written

code, rather plays and refactors. US programmers, throws it away and starts from the scratch.

Next, customer representative (future user) have to be available for the developers during the

development, this could be also problematic.

Understanding of iterative development, planning objectives and assessing the results of

iterations are not easy. We meet every day people telling us opinions like iteration can be

repeated; iteration can be extended; testing is done at the end of project; results of the

iterations do not need to be verified, etc.

Communication

Communication is probably the most important topic of distributed agile development. First,

the team has to know and share the vision of the system (project). The whole team should

agree on vision, if not, people will not perform at their best. Scrum talks about so called self-

managed teams. Such teams do not have only responsibility, but also authority to make

decision. There is no manager giving tasks, team itself agrees on and each member takes tasks

that need to be done. Such teams are also cross-functional, analysts do test cases or test scripts

as well; team members cooperate during the whole development.

For knowledge and information spreading and for team commitment are important also daily

meetings. Daily meetings take only 15 minutes and are performed every day in the morning.

 162

The topic is to say to colleagues what I did yesterday, what I am going to do today and if I

have any problems, impediments. If some problems occur, another meeting is planned with

the only people needed.

As architecture is very important for every system, agile development approaches define some

ways of communication. As said before, Scrum has daily synchronization meeting. Rational

Unified Process (RUP) has communication around architecture

Figure 6. RUP approach - communication around the architecture (left part is common way; right part

depicts architectural team)

Second way, how to spread the knowledge of requirements and architecture in distributed

development is to have the role of requirements interpreter offsite. Man playing this role

knows customer needs and usually was member of onsite team in the preliminary phase of the

project. Another approach is so called gate-keeper. This is usually team architect (skilled,

senior designer) and only these gate-keepers communicate among the teams, not particular

team members. The last important thing also affecting communication is division of

application into parts. It is not good to functionally (by roles) divide application that means

analyst team, design team, development team, etc. It is better to divide application according

the stories (functionality) and completely develop the stories. This has preconditions: strictly

defined interfaces among subsystems and often synchronization and integration of the code.

Commitment

The management commitment is also important for agile projects. We need support from

management and sales people (must understand “agile business model”). If contract says all

requirements are defined and detailed plan created upfront and frozen and developers have no

contact with the customer during the development, we are not able to do agile project (at least

not a pure, effective one). The team member’s commitment in agile approaches is built in. In

XP team member need to commit for values, in Scrum exists team commitment on sprint

backlog.

Tracking the progress, evaluation criteria

Agile thinking changes also tracking the progress. We do not focus on plans and what is done

from the plan, because it is often out of reality. Rather we focus on remaining work (e.g.

Burn-down charts from Scrum). Definition of done is important. This definition is strict, e.g.:

 163

story’s implemented, 100% of unit tests passed and user has accepted. To know more about

this, see [4] and [5].

Where and how to start

This question is perhaps the most frequent one in our life. So, to give short answer, that is not

still the same and is not easy, follow these steps:

• Involve mentor into the project from the beginning.

• Start with a small skilled team, known domain or/and technology.

• Do an analysis/assessment with the mentor and start with the poorest part, than

perform it again (various kinds of tools can be used: questionnaire, theory of

constraint, CMMI).

• Do not implement all techniques at once (big bang), implement them iteratively (same

as the software)

• OpenUP [8] is a good starting point.

7. CONCLUSION
This paper summarizes our experience from different projects, environment and problem

domain. Iterative and incremental development with agile principles and techniques is

suitable almost for all types of projects: new development, maintenance, combinations of

both. Introduced techniques work well in all these types. But it is important to stress, that to

start with it is not really easy. Involvement of the skilled mentor should be one of the critical

things as well as customer and team involvement and commitment. Some other hints and

approaches how to start with agile can be found in [7].

8. REFERENCES
[1] Agile manifesto. Available on [http://agilemanifesto.org]

[2] The Standish Group research: Chaos Report. 2002. Available on

[http://www.projectsmart.co.uk/docs/chaos-report.pdf]

[3] Poppendieck, M.: Implementing Lean Software Development. AW. 2006.

[4] Cohn, M.: Agile Estimating and Planning. Prentice Hall. 2005.

[5] Schwaber, K.: Agile Project Management with Scrum. Microsoft Press. 2004.

[6] Bergstrom, S., Raberg, L.: Adopting the Rational Unified Process. AW. 2004.

[7] Kruchten, P.: Going over the waterfall with the RUP. 26 Apr 2004. Available on the

Rational Edge: [http://www.ibm.com/developerworks/rational/library/4626.html]

[8] OpenUP. Available on

[http://www.eclipse.org/epf/downloads/openup/openup_downloads.php]

