AUTOMATIC DETECTING AND REMOVING CLONES IN
JAVA SOURCE CODE

Tomas Bublik, Miroslav Virius
Fakulty of Nuclear Science and Physical Enginee@mech Technical University in Prague
tomas.bublik@gmail.com

ABSTRACT:

This paper deals with the detection of the clongbé Java language source code. Especially
the ,non-ideal” clones are discussed. These acepief code that are not exactly the same.
This paper focuses on the most important partercdse of the non-ideal clones: extracting
and defining a new method. Some improvements aygested.

KEY WORDS:
clone detection, abstract syntax tree, tree algoritlava source code

1. INTRODUCTION

Nowadays, it is more or less usual to use alreattyenw pieces of code. The main reason is to
save the programmer’s time, of course. In the @mgning, the initial step is to check
whether the intended algorithm or technology alyesxsts, and if it is the case, try to use it
in the developed code. For larger projects, whiehdeveloped in team, and which have
thousands of code lines, clones occur. Unintenttates cause many troubles in the further
code development and maintenance. Each error ofifumality change must be corrected in
every clone occurrence. In the case of large ptaj¢iae clone detection could be a serious
problem. It may be the cause of one the worst eéyyme: the compiler finds no error, but the
program doesn‘t works properly. According to [®letclone occurrence in an average project
is between 7-23%. Moreover, it is usual that 70f% e programming is only the
maintenance of the existing code.

Many studies deal with the detection and the reroivine clones. This is a relatively

difficult discipline which improves continuouslyh& possibilities of the clone detection grow
hand in hand with the computational power. Accagdm[6], the whole process can be
composed of the following steps:

1) Preparation and transformation of the original ctwdanother structure

2) Clones detection in this new structure

3) Connection between the clones and source code

4) Transformation of the clones into newly createdctires
In this article, we describe these steps from waripoints of view and mention some
improving procedures. However, many proposals efttansformations exist. There are 4
essential groups of the approaches to this isenaudl, lexical, syntactic and semantic one.

2. TEXT ORIENTED APPROACH

This approach uses simple algorithms for code coisgra The implementation of these
algorithms is simple and it is independent on tfegmmming language used. In the first
stage, the code is normalized. The text normatinatbnsists of the elimination of gaps,
blank lines, comments and others unnecessary Biuiext stage, the lines or blocks of
various lengths are compared. Thi©®?) complexity algorithm. One of the possible
improvements is the hashing of the lines or codekd into buckets.

10

The text oriented approach has small ability oheldetection, because the code duplicities
must perfectly match. The text algorithms fail @rywsmall differences in the clones, e.g. if
the variable names differ. Therefore, an improveidion exists based on parameterized
search. Parameterized search uses regular expressitreat tiny code differences.

On the other hand, text approaches are very fassaitable as a part of more advanced
processing.

3. LEXICALAPPROACH

This approach is based on the transformation o$tluece code into a sequence of lexical
tokens. It operates like the compilers; the segeeand the subsequences of tokens are
scanned and in the case of the match, the corrdsgpariginal code is returned as a clone.
In comparison with the textual approach, the lexicees are more robust, but dependent on
the programming language used. However, it is rsacgs0 know the grammar of the
language. They are resistant to spaces etc., bytlso can‘t find semantic similarities.
Lexical approaches are usually used together \Wwehext search.

3.1 Tree structure analysis
Tree analysis belongs to the category of the stintd@pproaches. These approaches are now
N the most quickly developing ones. They
Helleworld have wide range of settings, adjustments
_/ and use. Principle of this approach is the
_ source code transformation to the syntax
;::f' block | tree and processing it by already known
~— algorithms. The source code can be
expressed as a graph in many ways: As a
\ flow graph, as a dependence graph, as a
[System.out.printin() |
' class graph, etc. Probably the most
common form is the Abstract Syntax Tree
(AST). AST is the code representation
that is used by the compilers. In AST,
each meaningful element is modeled as a
node. As in previous cases, the comments
and the spacing are omitted.

public static |
\ void main() |

L

|: String[] args 1

Fig. 1 Example of the abstract syntax tree

AST in the Figure 1. represents following code peip

public class HelloWorld {
public static void main(String[] args) {
System.out.printin(x+1);

}
}

The rules for the AST are:
» Each node represents an element in the source code,
« there are exactly specified node types which depanthe used language,

11

» each node type has exactly specified propertidsnsdes etc.
A pioneer in this area is I. D. Baxter who desdaiibe[5] an enhancement of clone search
procedure. Baxter showed that the algorithm fonetosearching h&3(n®) complexity,
wheren is number of sub trees in AST of source code5]nHe described enhancement using
heuristics which assigns a hash code to each sapand accordingly classifies it into a
bucket. Next, only the sub trees in the same bualeetompared. Baxter shows that this
improved algorithm ha® () complexity in the worst case. This algorithm seras the basis
for the following research in field of clone detfeat N. Juillerat [1] presented detection
method based on sub trees, too, which aren’t tjutsame, but they have the same
discontinuous parts. Consider this graph:

He performs clone detection using a post-ordergssiag of the tree. The result is a list of
tokens. By using simple search commands on thjshksreceives subsequences of clones.
Example of tokens from the previous figure:

[X’ 3’ *! get]! [X]1 [_]! [4]

All these algorithms using graph techniques whighkaown for many years. After
successful clone detection, it is necessary tothedconnection between the newly
represented code and original one. Next, the algiade is replaced by extracted methods.
In this stage, it is impossible to use the wellAknalgorithms like in clone searching stage.
All the restrictions of the current programmingdaage must be considered. For example, in
Java, it is impossible to extract the method witirerthan one return value from a code with
multiple outgoing data flows.

For example:

varA = x + 1;
varB =y + x;

The variableyarA andvarB are the output, but it is not easy to extract thide and to insert

it into a new method, because Java is unable torrédvo values. Further, it is impossible to
extract code snippet, which contains multiple comdsaransferring out the control flow (i.e.
in which the statements like break, continue amgrneare used). For example:

Iterator something = ...;

while (i.hasNext()) {
MyClass myClass = (MyClass) i.next();

12

if (myClass.getVarA.equals(,end")) {
continue;

}

if (myClass.getVarA.equals(,end2)) {
continue;

}else {

return;

}
}
Juillerat [1] described a restriction list, whiclust be considered during method extraction
process. He proposed how to bypass some of thesitiens. For multiple outgoing data
flows, it is suitable to choose the longest subsage of clone tokens, which has only one
outgoing data flow. However, it is necessary to endéita flows analysis before the method
extraction itself. This process is described by.[ltlconsists of the function separation which
indicates interrupted flow and cancels the reshefcommands. Unfortunately, these
solutions suits only for the C language. It is applicable in Java due to the one return value
restriction.

Semantic approach

The last type of clone detection approach is tineasgic analysis. A source code is transferred
into program dependency graph (PDG). The nodesi®fytaph represent the expressions and
the statements, while the edges represent theot@mid data dependencies. The clone
searching problem is then turned into the isomarghb graph searching problem. The
practices described can be found in [12]. This kihthe clone searching is usually used in
the plagiarism detectors.

Possible improvements
A disadvantage of the text oriented approachdsaisthey fail in ostensibly simple cases. For
example:

a=x+1l;a=1+x

Two different trees will arise from this code srgppnd no duplicity will be found. A solution
could be to implement some text search or testdhéage of the elements in the statement.
Unfortunately, this could bring the exponential gbexity and the algorithm would be
useless.
This problem can be avoided by sorting appliedaalyeduring the tree assembling process.
But not all the content can be sorted. We can defimple rules for sorting of the variables in
assignment statements. For example, it is suifablihe operations, for which the
commutative law is applicable (operations ,+“, ,;*). Individual elements can be sorted
alphabetically, then by the number and then specddr of symbols could be defined.
This algorithm can proceed recursively from thedaf the smallest operation, which is
compliant for interchange of the operands accortbrthe commutative law. We will
demonstrate sorting on example:
one=1+(1+x)+(y+1)+(a*h)

two=(b*a)+(x+1)+(1+y)+1

13

First, the inside parts of the parentheses aredofhese are the shortest operations capable
to interchange of operands.

one=1+(1+x)+(Q+y)+(a*h)

two=(@*b)+(1+x)+(1L+y)+1

Second, the higher lever elements are sorted. P@&wss counts as one unit and their contents
are amendable to the same rules.

one=1+(1+x)+(1+y)+(a*b)

two=1+(1+x)+ (1 +y)+(a*h)

It is obvious, that these statements are the saih@ & easy to extract a new method.
Nevertheless, not everything can be sorted bywhis The sorting without any loss of the
meaning is possible in the case of methods andats in a class, too. It is not so easy in the
case of the blocks of statements. The article ifidifates some rules which it allows.
However, there are some cases, for which is it sirmepossible. For example:

logger.info(,Going to instantiate new variable");
String hello = ,Hello wordl!*;

Because we cannot assume the existence of preda¢ernules for the logging and its
relationship to the code, we are unable to detegminether these two statements belong
together. It is impossible to change the ordehefgarameters of the method, too:

someMethod(int paraml, String param?2)
someMethod(String param2, int param1l)

Despite of the same name and the same name of g@m@nthese methods may be
completely different. Certainly, many other exansptan be found.

Defining various levels can provide more optionghi® improvement. One kind of level
could set a number of occurrences required todreealletection meaningful. If we find this
statement:

a=1+x

twice, it does not make sense to write a new metbioid. This could be helpful already by
classification of sub trees into the bucket. If bueket contains only small number of sub
trees, we can afford to skip it.

Another kind of level would be set a minimal regaidength for a similar sequence of tokens
or its rareness. For example, if there are fewtsiat subsequences of maximal length of 2,
the transformation and extraction of the new methildhot pay off.

But there are also cases (quite common), when diéfes a little and extraction could be
easily done by parameterization.

int resultl = (multi(x * 3) - (x + 2) - 1);

int result2 = (multi(x * 3) - (x * 2) + 1);

The trees differ in two nodes (operators ,+, ,d,**). By comparison of sequences
created from post-order processing of the treegeaeive 3 identical subsequences. Instead
of approach suggested by Juillerat [1], anotheraaagh is possible. We can create a new
enum type, which has values equivalent to the eperanentioned before.

14

-

- —. N

f result2 |
| resultl \ .
\ Ny
e - -
= . — / \ Vs ~
/ .\I / 1 \'l I - | 1 :'
= / /
\, / .) v
- - - S T ~ - —
]
J v
! \ { 1 \
[multi() | { multi())
AN S
e — - -
d
s 4
/ . 4
B e WY e Sy
¥ 4 L P o -
. B . B B / .,
/ N A 7 (*) / x A f/
(* | A | | | 2
\ | A 2 AN e / \
_ \ \ _ N - /
; - — / - -
/ — - ¥ i
©“ 3y o . - -
o ™ Van . 7 x \ Ve Y
\ { | |
I * l 3 I l‘ .-"I \ 3 ;
e 4 . - / S . S Sl

public static enum OperationType {
ADD,
MULTIPLY,
SUBSTRACT;

}

Furthermore, the extracted method has a paramghert also parameters to determine the
required type of operation.

private static int refactor(int x, OperationType fi rstOp, OperationType
secondOp) {
int temp = 0;

int leftOperator = x;

int righOperator = 2;

if (firstOp.equals(OperationType.ADD)) {
temp = leftOperator + righOperator;

}

if (firstOp.equals(OperationType.MULTIPLY)) {
temp = leftOperator * righOperator;

}

leftOperator = multi(x * 3) - temp;
righOperator = 1

if (secondOp.equals(OperationType.SUBSTRACT N {
temp = leftOperator - righOperator;

}
if (secondOp.equals(OperationType.ADD)) {

temp = leftOperator + righOperator;

}

return temp;

15

Moreover, the already known algorithms for the eigmasolving can be applied during the
method extraction. A method with the parameter@@ldo replace these code snippets which
are the same except for a few statements thaiassete remove. We can identify them by

extra branches in the tree.

[resuma |

ra N - ™ { x

\ / “) — -

| result2 I

multi()) "./ + ,

*

~
|

) x \
/ \)
T AN L

There can be, for instance, a block of severa¢stahts and another similar block with few
extra statements. The newly created method wilelihe parameter (among the others),
which will determine whether to exclude differetdtements of not. But again, it is necessary
to follow the rules for the method extraction [11].

The other option for the code with multiple outgpfiows is to create a new object, which
will hold the values for these data flows. Considierinstance, the code snippet with 2

outgoing values (one and two):

intone =1 + x;
inttwo=1+vy;
System.out.printin(one);
System.out.printin(two);

The newly created class will be:

public static class NewClass {

private int one;

private int two;

public int getOne() {
return one;

}

public void setOne(int one) {
this.one = one;

}

public int getTwo() {

return two;

}

public void setTwo(int two) {
this.two = two;

}

16

}
And the extracted method with the new object aswdgoing flow:
private static NewClass newMethod(int X, int y) {
NewClass newObject = new NewClass();
newObject.setOne(newOperation(x));
newObject.setTwo(newOperation(y));
return newObject;

}

private static int newOperation(int input) {
return 1 + input;

}
The original code snippet will be replaced by this:

NewClass newObject = newMethod(x,y);

All the next occurrences of the use of these véggatill be replaced by theewObject.get*
call. For example:

System.out.printin(newObject.getOne());
System.out.printin(newObject.getTwo());

Using this type of code modification, it is importahat all the input variables are be of the
basic types. Otherwise, the newly created methondatachange the values of the input
variables. It could lead to a complication, if thedlues are used in the next code.

Conclusion

According to the methods described above, it iSais/that the tree approach is the most
promising one. That is because the major parteftgorithms is well known. Moreover, the
access to the AST used by the compiler is availgiblee Java version 1.6. Another advantage
is the tree independence on the programming lareguagan be created very powerful and
effective tool for removing clones by defining atitohal constraints.

The disadvantage of the tree approach is the diffimplementation and the memory and
CPU requirements. These algorithms will probabilifethe case of a very large project.
Currently, I'm involved in research of implementatienhanced capabilities of algorithms for
removing so-called ,non-ideal” clones. It shows that using is very easy for simple cases,
but for more complex ones is the situation verfialift. The ability to recognize the cases in
which the refactoring is dangerous seems to b&dhdeature.

REFERENCES
1. Juillerat, N., Hirsbrunner, B\n Algorithm for Detecting and Removing Clonesaual
Code 2006. Available alttp://citeseerx.ist.psu.edu/viewdoc/summary?doi1090.3829

[cit. April 2, 2011]

2. Juillerat, NModels and Algorithms for Refactoring StatemgRtsD thesis. Fribourg:
University of Fribourg, Switzerland, 2009

3. Tichelaar, S., Ducasse, S., Demeyer, S., NamatiN.A Metamodel for Language-
Independent Refactoringn: Proceedings of International Symposium omé&tples of
Software Evolution (ISPSE '00), IEEE Computer 8tcPress, 2000. p. 157-167

17

4. Nouza, OAutomatizované transformace objektavientovanych mod&l PhD Thesis.
PrahaCVUT 2010

5. Baxter, I.D., Yahin, A., Moura, L. Sant' Anna. Bier, L.Clone Detection Using Abstract
Syntax Treedn: ICSM '98 Proceedings of the International Confeeeon Software
Maintenance, IEEE Computer Society Washington, DEA 1998

6. Roy C.K., Cordy, J.RScenario-Based Comparison of Clone Detection Tegctesi In:,
2008. ICPC 2008. In: The 16th IEEE Internationahféoence on Program Comprehension,
June 2008

7. Ducasse, S., Rieger, M. DemeyerA%.anguage Independent Approach for Detecting
Duplicated CodelCSM '99 Proceedings of the IEEE Internationahféoence on Software,
IEEE Computer Society Washington, DC, USA 1999

8. Van Rysselberghe, F., Demeyer S., AntwerpenARtwerpen BEvaluating Clone
Detection Technique2003. Available at
http://citeseerx.ist.psu.edu/viewdoc/summary?dos?1).1.1.4.1398 [cit. April 2, 2011]

9. Baker, B.SOn Finding Duplication and Near-Duplication in Ladsoftware Systems
IEEE Computer Society Press, July 1995

10. Juillerat, N, Hirsbrunner, B:OOD: An Intermediate Model for Automated Refactgyri
In: The 5th International Conference on Softwardhddologies, Tools and Techniques,
SoMeT 06, Québec, Canada, 25 - 27 October 2006152 461

11. Komondoor R., Horwitz, Sool Demonstration: Finding Duplicated Code Using
Program Dependencem: Proceedings of the European Symposium on Brogring
(ESOP’01), Vol. LNCS 2028, 2001, 383386

12. Komondoor R., Horwitz, &Jsing slicing to identify duplication in source Godth:
Proceedings of the 8th International Symposium taticGAnalysis, Paris, France, July 16-18,
2001

18

