
19

DEVELOPMENT OF MODERN APPLICATION FOR IN-VITRO
DIAGNOSTICS

Petr Fiala, Michal Rost, Vladimír Španihel, Miroslav Virius
Czech technical university in Prague, Faculty of nuclear sciences and physical engineering

ABSTRACT:

This paper presents a software application for manipulating new generation of a product line of
thermocyclers. A device called thermocycler is used for performing DNA amplification using PCR [4]
method. As time passes by, thermocyclers are getting smaller and more complicated. Therefore, also a
need of more sophisticated control software arises. This is a real-time application that must be able to
run smoothly under various operating systems. Among other requirements, it has to be also robust (able
to run without break-ins), must log significant events and send log files to be processed on distributor's
master server. Last but not least, the application must provide modern and cross-platform GUI that
adjusts for every user role. We present the design of the architecture and some implementation results.

KEYWORDS:
In-Vitro diagnostics, thermocycler, C++, cmake, Qt framework

INTRODUCTION

Thermocyclers are widely used in biomedicine or food industry. Their main purpose is to detect
whether given DNA sequence contains desired subsequence or not. The process of this detection
consists of three elementary steps: DNA isolation, DNA amplification and spectroscopy analysis. Many
present-day thermocyclers are capable of performing last two steps, but not all three together. Our
company is preparing new generation of device, which will be able to do all three steps in a single run.
 Competitive software products for manipulation with thermocyclers are made-to-measure for
existing devices. Each device producer has its own communication protocol, so there is a need to
develop our own control software that will support all required features. Among all there is a strong
demand for software that will run under various operating systems.

1. ACTUAL SITUATION

 Present-day thermocyclers are developed by several biomedical companies like Bioterm/Biotech
or Corbett. Each company distributes its own devices with its own specialized control software.
Corbett's thermocyclers, which are widely used in Czech laboratories, are provided with Rotor-Gene
control software.

1.1 Rotor-Gene application

 Rotor-Gene 1.7.87 is a GUI application from Corbett Corporation, which is used for
manipulating the Rotor-Gene 6000 thermocycler device. Application allows processing and displaying
of real time data obtained from the device. This application is written in Visual Basic language and can
be used only under MS Windows operating system.
 Rotor-Gene software detects thermocycler device on COM port and instructs it with
time/temperature series called profiles. It is collecting the temperature and the fluorescence of the
samples during the run of the device thermocycler. These data are processed with the Rotor-Gene
software and the diagnosis predictions are made.
 The main advantage of the Rotor-Gene software is that it is capable of running in the virtual

20

mode (without thermocycler connected) and providing user with the generated testing data. The user
interface is complex and very intuitive despite it is organized as MDI application. All profiles can be
graphically edited and data that are being collected during the run of the device are plotted in
sophisticated graphs in real time.

1.2 TManager and TProfManager

 Thermocycler manager 4.11 (TManager) is a software from Bioterm company for manipulation
with T3000, TPersonal, T1 plus and TRobot thermocyclers. The functionality of this application is
similar to Rotor-Gene, but unlike Rotor-Gene, this application does not perform the real time data
analysis. Data are collected from device and stored in specified file only. The user interface of this
application is very brief and not well-arranged. Profiles can be edited only as a list of text values.
 Bioterm provides also a TProfManager application for their TProfessional thermocyclers. This
software allows to control up to 5 thermocyclers simultaneously. Both these products are capable to run
under MS Windows only.

2. TECHNOLOGIES USED

 The discussed application is developed with usage of waterfall model methodology.
Requirements were collected, specification and design were prepared using of UML 2.0 modeling
language in the VisualParadigm suite. Application is being implemented in C++ [1] language (CEO's
request). Since the C++ does not provide native GUI, threads, thread-safe containers and other required
features, Qt4 library [6] is used to support them. For the user interface development, OpenGL and Qwt
libraries are also utilized, because the application must provide an interactive GUI supported with the
animated 3D models.
 The application is being developed under QtCreator IDE and for automated makefile generation
cmake build system [3, 5] is used. Although qmake is native choice for Qt application, we experienced
some serious problem with library linking in qmake. Due to that, we decided to switch to cmake.

3. APPLICATION REQUIREMENTS

3.1 Functional requirements

� Profile management - to be able to create and store different temperature profiles and send them
to the device

� Sample management – to describe the samples and assign them to the device's rotor
� User role management – to work with different user roles, only the manager of the laboratory

will be allowed to see the diagnosis
� Real time data processing - collect the data from the device in real time, transform it in the core,

plot it in UI and store it in the data model
� Service mode - provide the service mode in which the calibration of the device should be

performed

3.2 Other (non-functional) requirements

� Robustness - to be able to run without break-ins, all significant events must be logged
� OS independency - run under different operating systems
� Eye-candiness - support user interface with animations and visualizations, allow graphical

21

editing of profiles

4. ARCHITECTURE OF THE APPLICATION

 During the design process, we divided the application into five modules (see Fig. 1): common,
datamodel, deviceio, core and ui. Utility classes like logger or state machine implementation that are
common for other four modules are stored in the common module. The datamodel contains all the
classes that are needed for the manipulation with the profiles and measured data or for the management
of physical quantities and units. The deviceio module allows application to communicate with the
connected device, this module contains classes that wait for device messages, generate signals from
these messages and send signals to the rest of the application (other modules). The core module is
responsible for transmitting the data between the data model and deviceio, it also performs some
calculations and data processing. The ui module contains the user interface of the application, beside
dialogs and forms it provides graphical components for the manipulation with the time/temperature
plots or for the 3D manipulation with rotor.

4.1 Architecture of datamodel

 The datamodel is composed of several segments. The key part of datamodel takes responsibility
for maintenance of profiles and templates (Fig. 2).
 The profiles are time/temperature series that instructs device how to change the temperature as
the time passes. There are three basic profiles: hold, melt and cycling. The hold profile specifies the
temperature and the period, for which it must be maintained. The melt profile instructs device to rise
the temperature from the staring value up to the end value with a given time/temperature step. Finally,
the cycling profile instructs the device to repeat several periods, where one period is sequence of holds.
 The template is a sequence made of various profiles. This sequence will be assigned to every
run of the device.

Figure 1: Package diagram - main modules of application

22

 The other packages (submodules) of the data model are rotor, profiles, results and model3d. The
rotor package is responsible for managing different types of rotors that can be used within the device. A
package profile contains classes that hold information about samples (test tubes). Samples should be
marked as positive control, negative control, or can be assigned to specific patient. Results package is
responsible for holding data collected from the device (temperatures, fluorescences, rotor's
revolutions). Package model3d contains API for manipulating with 3D models. This API is used in GUI
of application to manipulate with models of rotor or other visualizations.

4.2 Architecture of deviceio

 Since the application should be runnable under Linux and Windows operation systems it must
be implemented two ways to communicate with the device. Both types of operation systems are
specific but there is also possible to find some similarity.
 The important requirement is the robustness. The application has to be able to find whether the
device is connected or disconnected at each time. Therefore, the enumeration of device as well as the
interchange of the messages is done in an infinite loop in separate thread. Fig. 4 shows the base
algorithm to do one step of the loop. This base algorithm is similar for both types of operation systems.
The difference is in implementation of concrete actions.

Figure 2: Class diagram for templates/profiles management

23

Figure 3: Class diagram for port management

Figure 4: Activity diagram of the one step of the infinite loop

24

 The enumeration is solved by using a Udev library on Linux systems whereas on Windows it is
SetupAPI library. It is only an interim solution. The process of enumeration and communication will be
replaced by an event-driven thread instead of the infinite loop in the future.
 Common USB cable is used for connecting the device to PC. Microcontroller placed on the
device is able to transform USB to VCP (Virtual COM Port). It is very useful because it is possible to
communicate with the device using simple text communication protocol like with RS-232 port.

4.3. Architecture of common

 The common module contains classses that can be accessed from all other modules. The most
significant part of the common module is the logger package (shown in Fig. 5). The main reason for the
implementation of the logger is to make the logging of many kinds of messages sent from different
parts of the software easier. There are two possible senders of message (application and device) and
four types of messages (debug, warning, error and critical).
 First implementation of logger contained only one message queue. But this implementation
experienced difficulties, when a large number of messages in a small amount of time was sent to the
logger. These difficulties resulted in breakdown of the whole application. Therefore the FWriterThread
class has been introduced. This class acts like a pool of the message queues. When the the currently
used queue is full (reaches its maximum capacity), the FWriterThread is asked for an empty queue
which is substituted for the current one. While an empty queue is being filled, the full one is flushed to
the file. In the case that FWriterThread is asked for a queue and there is no empty one, new instance of
the queue is created.

Figure 5: Class diagram of logger

25

5. RESULTS AND FUTURE DEVELOPMENT PLANS

 The application development is so far still in implementation phase and the device is also under
heavy development. Our software team is provided with only a prototype of the microcontroller. Even
though this microcontroller is not connected with device, it is capable of testing data generation. Our
application is capable of receiving, storing and plotting of this data. During the development,
application is being tested under Archlinux, Ubuntu Linux, MS Windows XP, MS Windows 7 operating
systems.
 It is estimated that the whole development will take approximately another half of a year, if
everything progresses smoothly. User roles management system must be implemented to fit the
datamodel, widgets for controlling and monitoring of the device are still missing in the UI and only
virtual mode of deviceio and core modules are fully implemented. Communication test with device
prototype has yet to be performed.

Fig. 6 presents the screenshot of the application prototype on which the 3D model of the rotor
with samples can be seen.

ACKNOWLEDGEMENTS:
This work is supported from grants: MŠMT LA08015 and SGS 11/167.

Figure 6: Screenshot of the application

26

REFERENCES:
[1] Dirk L.; Mejzlík P.; Virius M. Jazyky C a C++ podle normy ANSI/ISO. Praha: Grada Publishing
1999. ISBN 80-7169-631-5
[2] Fries R. C.; King P. H. Design of Biomedical Devices and Systems - second edition. CRC Press
2009. ISBN 9781420061796
[3] Hoffman B.; Martin K. Mastering CMake. Kitware 2010. ISBN 978-1-930934-22-1
[4] Hunt M. Real Time PCR. [online]. 2010-07-01, [cit. 2011–03–27]. Available on WWW:
<http://pathmicro.med.sc.edu/pcr/realtime-home.htm>.
[5] Kitware Incorporated. CMake documentation. [online]. 2010-12-09, [cit. 2011–03–27]. Available on
WWW: <http://www.cmake.org/cmake/help/documentation.html>.
[6] Nokia Corporation. Qt Reference Documentation. [online]. 2010-06-09, [cit. 2011–03–27].
Available on WWW: <http://doc.trolltech.com/4.7/>.
[7] Pecinovský R. Návrhové vzory. Brno: Computer Press 2007. ISBN 978-80-251-1582-4

