DEVELOPING A NEW DAQ SOFTW ARE FOR
THE COMPASS EXPERIMENT

Vladimir Jary *, Tomas Liska, Miroslav Virius

Czech Technical University in Prague, Faculty otar Sciences and Physical Engineering
Vladimir.Jary@cern.ch , Tomas.Liska@cern.ch , Miros-
lav.Virius@cern.ch

ABSTRACT:

COMPASS is a particle physics experiment situatedthee SPS accelerator in the CERN
laboratory. The existing data acquisition systenthef experiment uses standard servers and
the DATE software. With the increasing data rate e age of the hardware, the failure rate
and the dead time of the system is also consideliableasing, thus a new DAQ system
based on a custom hardware is being developed.

At first, the current DAQ system is discussed, #meh the overview of the software for
the new system is analyzed. Finally, the DIM lilgrtrat is used for communication between
nodes is presented and benchmarked.

KEYWORDS:
COMPASS, data acquisition, DATE, networking

INTRODUCTION

Modern particle physics experiment produces enosguantities of data. It is not possible to
analyze data online, therefore data acquisitiortesys are used to select, readout, digitize,
filter, and store physically interesting eventsisTpaper focuses on the data acquisition sys-
tem of the COMPASS experiment.

At first, the physical program of the experimenbigefly introduced. COMPASS uses the
ALICE DATE package for the data acquisition (DA@)us this package is described in more
details. DATE software runs on the standard x86atihle hardware. The dead time of the
system increases with increasing trigger rate, thdsvelopment of the custom FPGA-based
hardware for DAQ has started. It has been decidedplace the DATE package with brand
new software.

COMPASS EXPERIMENT

The COMPASS, which stands for the Common muon aatbp apparatus for structure and
spectroscopy, is a fixed target experiment run@intpe Super proton synchrotron (SPS) par-
ticle accelerator at the CERN laboratory in Gen@&uaitzerland [1]. The scientific program,
which includes experiments with the hadron andrtiu®n beam, has been approved by the
CERN scientific council in 1997. After several ygaf preparations, construction, and com-
missioning, the data taking started in 2002. Culyea proposal for the second phase of the
experiment (see COMPASS-II [2]) has been submitibethe scientific council for approval.
The second phase would continue at least until 20&pproved by the council.

! Corresponding author

35

When the beam particles interact with the polaritsaget, secondary particles are pro-
duced. These secondary particles are detectedsystam of detectors that form the COM-
PASS spectrometer (see Figure 1). Detectors & tastrack particles, to identify particles,
and to measure energy of particles. Particle tracks performed mainly by various wire
chambers. Particle identification is implementedhsy muon filters and the Cherenkov detec-
tors. Finally, the deposited energy is measurethbyelectromagnetic (for electrons and pho-
tons) and the hadronic (for hadrons) calorimet®et.of data describing the flight of particles
through the spectrometer is known as an event.@@ittee typical event amounts to 35 kB.

SM2

Ecal1
Hezal1

& Stations

SPS
M 2

w WVall2
w W alll

=
Tm
Figure 1: The layout of the COMPASS spectrometermage taken from [2]

The SPS accelerator works in 16.8 s long cyclesdiasists of 12 s of acceleration and 4.8 s
of particle extraction. The extraction period isaaknown as the spill (burst). The cycle of the
accelerator has strong impact on the design ob#® system.

CURRENT DATA ACQUISITION SYSTEM

The DAQ system used by the COMPASS experiment stmsif several layers [9][12]. On
the lowest level, the detector frontend (primarfgceonics lie. The primary electronics con-
tinuously preamplify, discriminate, and digitizetaldrom detectors. There are approximately
250000 data channels; data streams from multipd@rodls are concentrated into the concen-
trator modules called GeSiCA and CATCH. The GeS{(G&M and Silicon Control and Ac-
quisition) modules serve the GEM and silicon detecthat are characterized by a high data
rate. The CATCH (COMPASS Accumulate, Transfer armht€®l Hardware) modules per-
form the readout of the other detectors. Althoug frontend electronics constantly produce
data, the readout by the concentrator modulesrfsnpeed only when the trigger control sys-
tem TCS selects physically interesting event (thasion is based on the amount of deposited
energy in calorimeters and on the signals from kodpes). Additionally, the TCS distributes
the timestamp and the event identification. Corma¢ot modules create data blocks called
subevents by assembling data from multiple detexttannels corresponding to the same trig-
ger and appending the subevent header with metenatamn provided by the TCS.

The subevents are transferred into the next prowgessage, the readout buffers (ROB),
using the optical link S-Link. ROBs are standardvees equipped with 4 spillbuffer PCI
cards. Each spillbuffer has 512 MB of onboard memdrich serves as a buffer for incoming
data: it is being filled during bursts and it igrigecontinuously unloaded into the main mem-
ory (RAM) of the ROB. The ROB layer uses the cyolehe SPS accelerator to reduce the
data rate to the higher processing stages to artedhthe onspill rate. From the ROB layer,
the subevents are pushed into the next stage whicbmposed of computers called event

36

builders (EVB). ROBs and EVBs are connected int® @&igabit Ethernet network. Event
builders use the information from the subevent bestb create full events and catalog files
with metainformation. The catalog files are stomr@d the ORACLE database, the events are
sent to the CERN tape permanent storage CASTORstee delay. Remaining CPU power
of the event builders is dedicated to the eventdiagnand event filtering.

The DAQ system consists of the custom hardwaretladndustry standard components.
For example, the spillbuffer PCI cards have beareld@ed at the Munich Technical Univer-
sity for the COMPASS experiment; the S-Link teclogy has been developed for the AT-
LAS experiment. On the other hand, ROBs and EVBsstandard, x86 compatible servers.

DATA ACQUISITION SOFTWARE

The COMPASS DAQ software is based on the modifiédlP (Data Acquisition and Test
Environment) package [3] maintained by the collation of the ALICE experiment. The
DATE functionality includes data flow control, ruwontrol, event sampling, interactive con-
figuration, or information reporting. The systermtiguration and software logs are handled
by the MySQL database [5][7]. Additionally, the DETalso defines the data format that
represents events and subevents. The DATE is walglde system; it can perform data ac-
quisition on the small laboratory systems with oahe computer, on the other hand it runs
also at the ALICE experiment with hundreds of cotepa

The DATE is written (mainly) in the C language; tleguirements on the DAQ hardware
are following: each processor involved in the systaust be x86—compatible, each processor
must be running (32-bit) GNU/Linux operating systend all processors must be connected
to the same network and must support the TCP/ik sta

The DATE divides processors involved in the DAQoitdvo main categories: the LDCs
and the GDCs. The LDC (Local Data Concentratorjgoers the readout of event fragments.
Depending on the configuration, the subevents iineresaved directly on the LDC, or send
over the network to some GDC. The GDC (Global B@d#lector) performs the event build-
ing. The DATE supports load balancing of GDCs tigloduhe Event Distribution Manager
(EDM) agent. If the EDM is not used, event fragnseante distributed to GDCs using a round
robin algorithm. Clearly, the LDCs correspond te tieadout buffers and the GDCs to the
event builders in the COMPASS terminology.

Several additions to the DATE package have beerlermgnted for the needs of the
COMPASS experiment. E.g., the program COOOL (COMBAShject Oriented Online) is
analyzing part of the data online on one eventdeuil The results presented in a form of the
ROOT histograms are used by the shift crew to moortite detector performance. To reduce
the amount of events stored to the tapes, the efilier program, called Cinderella [11], has
been developed. Online filter can be regardedhagtalevel trigger, it rejects physically unin-
teresting events. Electronic logbook is a tool usedtore metainformation about runs and
spills. Most of the information (e.g. the run lisg)added automatically by the DATE system
but a shift member can also add comments manugilg.logbook is stored in the MySQL
database; users can browse it using the web intelfased on the PHP language.

NEW DATA ACQUISITION ARCHITECTURE

During the first year of the data-taking (2002)0ZiB of data have been recorded. During the
2004 Run, the DAQ system recorded 508 TB of d4f@][11][12]. The increase is caused by
increased number of detector channels and increaggger rate. However, increasing the
trigger rate also increases the DAQ dead time.ddzal time is defined as a ratio between the
time when the system is busy (i.e. it cannot pre@s/ new events) and the total time. The
dead time increased to 20% in the 2010 Run, thisnsi¢hat one fifth of the beam time was

37

wasted. Additionally, as the hardware gets oldee, failure rate also rises. A research and
development of the new DAQ architecture that waaldrcome the aforementioned problem
has started.

The new DAQ system would perform the readout amdetent building by a dedicated
custom hardware based on the Field Programmable @aty (FPGA) integrated cir-
cuits [10]. This would greatly reduce the numbecofmponents involved in the data acquisi-
tion and consequently, the reliability would bergased. Additionally, the existing readout
buffers and event builders could be used for amothsks, e.g. for the filtering of events.
Since the event building would be done by the hardwthe run control and the monitoring
would be the main tasks of the DAQ software.

We have evaluated the possibility of using the DAg&ckage for the new DAQ sys-
tem [8]. The DATE is too complex software for theeds of the proposed architecture. Addi-
tionally, DATE requires x86 compatible hardwareu$hit has been decided to develop cus-
tom control and monitoring software. On the othandy some components (e.g. a logbook) of
the DATE package could be reused after small mzatitins. Furthermore, the data structures
used for the events must remain unchanged becdubke compatibility with programs for
the offline analysis. Also the compatibility withd detector control system DCS must be re-
tained. The DATE represents the entities involvedhe DAQ (ROBs, EVBs, EDM, ...) by
the finite state machines implemented in the Skdémagement Interface (SMI++) frame-
work [6]. The communication between the state mahiis based on the Distributed Infor-
mation Management (DIM) library [4] which is incled in the SMI++ framework. The DIM
also intermediates the communication with the DgSesn, therefore the DIM library should
be used in the new DAQ software.

EVALUATION OF THE DIM LIBRARY

Originally, the DIM has been developed for the reeetithe DELPHI experiment at CERN,
today it is used at LHC experiments. The DIM lilgrgrovides functionality for the asyn-
chronous, one to many communication in the hetereges network environment. Based on
the TCP/IP, it is running under GNU/Linux, Windov@&ylaris, Darwin, VMS, VxWorks, and
other operating systems. Interfaces for C, C++aJéwough Java Native Interface), FOR-
TRAN, and Python languages are available. The conication system consists of the DIM
name server (DNS), the publishers (servers), amgdubscribers (clients).

T DIM Name Server
-~
N
Service o < .
information / . / N\ Service
Service Registration
/ Requestion
/ 4 \
e
! Service information \.
@ Publisher
Commands
o
T~ —
T Subscription __ —

Figure 2: The functionality of the DIM-based commurcation according to [4]

38

Information services are characterized by a unitprae. When a publisher wishes to publish
a new service, it contacts the DIM name server Esgere 2). The DNS registers the service
name, the service format, and the address of thiésper. When a subscriber wishes to sub-
scribe to some service, it sends request with éneice name to the DNS which returns the
address of the corresponding publisher. In theiegipdn code, it is not necessary to explic-
itly communicate with the DNS; everything is domantsparently provided that the environ-
ment variable DIM_DNS_NODE that contains the adsl{egher IP or hostname) of the node
with the DNS is properly set. Additionally, the DIMandles conversion of data from the host
encoding to the network encoding. Thus, using thd ® implement the communication is
extremely simple. The DIM services can be divid#d 3 categories:

1. services that are requested by a subscriber oy on
2. services that are updated regularly at given iaterv
3. services that are updated when a monitored quasttagges

Additionally, the clients can also send DIM command the servers. The following C++
code implements a sample command service:

cl ass TestCommand: publ i c DimCommand{
voi d commandHandler(){

cout << * Recei ved command: “ << getInt() << endl;
}
publi c:
TestCommand(): DimCommand(* TEST_COWAND’, “ 17);
¥

To create a command service, one needs to sultblEBENCommandclass and overload the
commandHandler method. This method is called whenever a subscsieds a command.

In the constructor, a super class is created: iteedarameter represents the unique service
name that will be used to identify the command isertby the DNS and by subscribers. Sec-
ond parameter specifies the message format: ttee ¢t stands for integer, the letter “F” for
float, and the letter “C” for character. It is pids to combine the letters to define structured
messages. Typically, in tredmmandHandler method, the sent command data is received
and processed. To receive an integer message,aonase thegetint method. There are
similar methods that receive floats and characterstructured message can be obtained by
the getData method that returns a void pointer. To actuallg tlee command service, an
instance of th@estCommand class must be created and the DIM server mustaeg:

i nt main(int argc, char **args){
TestCommand command;
DimServer::start(" TEST_SERVERY);

whi | e(t rue){ pause(); }

}

The command service is running in the separateadhréherefore it is possible to pause the
execution of the main thread. The code that imphgma subscriber of this command service
is even simpler:

i nt main(i nt argc, char **args){
const int START RUN=1;
DimClient::sendCommand(* TEST_COMVAND’, START_RUN);
returnQO;

39

}

The command is sent by calling the static metbendCommand of theDimClient class.
First parameter identifies the command service;dther is the value that should be sent to
the service.

We have measured the performance of the DIM libmargrder to discover the optimal
message size. The test case consists of a publisktgoublishes a command service and one
monitored service. A subscriber sends a commandrVéhpublisher receives the command,
it updates the monitored service which triggersitassriber to fetch the updated value. When
a subscriber receives the update message, it aentlser command to a publisher. When this
cycle is repeated million times, the average data &nd number of exchanged messages per
seconds are calculated.

Size of thgData flow|Received |Size of thgData flow| Received |Size of thgData flow| Received
message | [kBIs] messages [§| message | [kBIs] messages [§|message | [kBIs] messages [
4B 14 3700 256 B | 923 3700 16 kB| 8840 600
8B 29 3700 512B | 1582 3200 32kB| 1039(300
16 B 58 3700 1kB 3690 3700 64 kB| 10667 170
32B 116 3700 2 kB 3899 1900 128 kB 1103% 90
64 B 233 3700 4 kB 7246 1800 255 kB 11179 40

128 B 456 3700 8 kB 7407 900
Table 1: Results of the DIM performance

The results for different sizes of messages arevsanmed in the Table 1. The measurements
have been performed on the local 100Mbit netwdrks tthe maximum theoretical throughput
is 12800 kB/s. As the message size increasescthevad data rate approaches the maximum
value. Some bandwidth is consumed by the overhetded CP/IP, some by the communica-
tion with the DNS. The relation between data flomd ahe message size is linear for the
smaller messages (roughly until 4 kB), for the ésngessages, the increase in the data flow is
slower as the flow converges to maximum theoretreéle. Number of exchanged messages
remains constant for messages smaller than 1 k&.s@ime tests have been measured for the
communication through the loopback device. In tase, the system exchanged 23000 mes-
sages per seconds if the message size was snialer8tkB, the maximum data rate of
260 MB/s was reached for 16 kB messages. Our geseim to be in a good accordance with
a similar measurement published by C. Gaspar

OUTLOOK

We have defined a test case that simulates a sib¥{@ system. The system consists of one
master and several slave processes that are ruonitige distributed machines. The informa-
tion about slave processes involved in the systeould be stored in the database or in the
XML file. The master process fetches this informaatand initializes all slave processes. The
master regularly broadcasts messages to all slévesslaves return the confirmation mes-
sage. The latency should be measured for diffesiees of messages, for different number of
slaves, for different message frequencies. Thectest should be used to compare suitability

of the C++, Java, and Python languages for devaiptiie new DAQ software. The test case
should be evaluated during May 2011.

Seehttp://dim.web.cern.ch/dim/DIM_Performance.pdf

40

Later in this year, the first test runs with thevneardware will be carried out, thus at least
minimal run control software will be required.

CONCLUSSION

The existing data acquisition system of the COMPARBeriment has been described. The
system suffers from a high dead time caused byetent increases in the trigger rate. Devel-
opment of the new DAQ system based on a customwaaedhas started. The new system
will require a new run control and monitoring saditw. The system will use the DIM library
to ensure the compatibility with other softwareteyss of the experiment. The DIM library
has been tested; the message size should not eké#ssf the highest frequency of ex-
changed messages is required. In the near futwesuitable programming language will be
chosen and the development of the run control egfpdin will begin.

ACKNOWLEDGEMENT
This work has been supported by the MSMT grants804®% and SGS 11/167.
BIBLIOGRAPHY

[1] P. Abbon et al. (the COMPASS collaboratiomjie COMPASS experiment at CERIN
Nucl. Instrum. Methods Phys. Res., A 577, 3 (2087) 455-518. See also the COMPASS
homepage dittp://wwwcompass.cern.ch

[2] Ch. Adolph et al. (the COMPASS collaboratio@QOMPASS-II proposalCERN-SPSC-
2010-014; SPSC-P-340 (May 2010)

[3] T. Anticic et al. (ALICE DAQ Project)ALICE DAQ and ECS User's GUuid€ERN
EDMS 616039, January 2006

[4] P. Charpentier, M. Donszelmann, C. GasppdM, a Portable, Light Weight Package for
Information Publishing, Data Transfer and Inter-pess CommunicatiopnAvailable at:
http://dim.web.cern.ch

[5] L. Flekova, V. Jary, T. Liska, M. Viriusfyuziti databazi v ramci fyzikalniho experimentu
COMPASSIn: Konference Tvorba softwaru 2010, Ostrava: \\SBechnick& univerzita Os-
trava, 2010, ISBN 978-80-248-2225-9 pp. 68-75.

[6] B. Franek, C. Gaspar: SMI++ State Managemeterface [online]. 2011. Available at:
http://smi.web.cern.ch

[7] V. Jary: COMPASS Database Upgrade: Workshop Doktorandské dny 2010, Prague:
Czech Technical University in Prague, Czech RepulNovember 2010, ISBN 978-80-01-
04644-9, pp. 95-104

[8] V. Jary:DATE evaluationin: COMPASS DAQ meeting, Geneva, SwitzerlandVegch
2011

[9] A. Kral, T.LiSka, M. Virius: Experiment COMPASS a {itace, In: Ceskoslovensky
casopis pro fyziku 200%, 5, str. 472.

[10] A. Mann, F. Goslich, I. Konorov, S. Pain AdvancedTCA Based Data Concentrator
and Event Building Architecturdn 17th IEEE-NPSS Real-Time Conference 2010, dasb
Portugal, 24-28 May 2010

[11] T. Nagel:Cinderella: an Online Filter for the COMPASS Exmpeent Minchen: Tech-
nische universitat Minchen, January 2009.

[12] L. Schmitt et al. The DAQ of the COMPASS experimént 13th IEEE-NPSS Real Time
Conference 2003, Montreal, Canada, 18-23 May 200.3439-444

41

