IMPLEMENTING THE LINQ QUERY LANGUAGE INTO
THE C++ PROGRAMMING LANGUAGE USING A
PREPROCESSOR

Jakulg Judas, Miroslav Virius
FIFICVUT

ABSTRACT:

LINQ is a query language similar to SQL that enaliteretrieve data form any object with
some standard properties. It was presented by Bbftras a part of the Visual Basic and C#
programming languages for the .NET Framework. @hiigle presents the implementation of
the LINQ query language in the standard C++. Hust as a preprocessor that translates the
queries into standard C++ language. We preseriabies of the LINQ for C++ grammar and
the main ideas of the preprocessor.

KEYWORDS.
LINQ, C++, Query language, Compiler

INTRODUCTION

Language integrated query, or LINQ, is a queryamggliage that can be used for any objects
in the source code. It was originally introducedhgmart of the .NET framework from
Microsoft, in the C# and Visual Basic programmiagduages. It enables the programmer to
access objects as well as other data sources gqgerggs similar to the SQL language.

Our aim is to design and to develop the preproceabksd will process the LINQ queries in
C++; as far as we are aware, there is no implertientaf such a tool publicly available.

THE LINQ SYNTAX

To implement LINQ into C++ using a preprocessor]iMmve to look at two different
problems. The first one is the implementation @fldinguage itself. The other one is parsing
existing C++ code sufficiently to be able to penfionecessary changes to the code.

Syntax description
The syntax of the query language we will be impletimg is as follows:

from[identifier] in [source collection]

| et [expression]

wher e [bool ean expressi on]

orderby [[expression](ascendi ng/descending)], [optionally
repeat]

sel ect [expression]

group [expression] by [expression] into [expression]

wherefrom determines the data source to be ukdlefines new temporary variables to be
used further in the querwhere sets the restriction filtersy der by determines the ordering
of the resulting dataelect declares what variables will be returned, gnoup by groups the
returned data into a group of containers rathan thane container.

42

EXISTING IMPLEMENTATIONS

The most complete existing implementation of thglaage is found in the original .NET
based languages.

According to the specification from Microsoft, thaeries are directly translated into
invocations of methodé/here, Select, SelectM any, Order By, Order ByDescending,
ThenBy, ThenByDescending, andGroupBY etc. These methods are invoked according to
the following scheme:

Dat a. Where(...).Select(...).OderBy(...)

By methods of reverse engineering, we further datexd that all code except for keywords
gets moved into new functions, which are then ghasgarameters to the methods above.

For example, for the query

var dotaz=fromx in pole
where x%1==0
sel ect x/2;

the compiler creates two new functions, one of Wwheturnsx%t==0, and the other returns
x/ 2; Then, the method#&/here andSelect are called with these new functions as
parameters.

The keywordet is handled by creating a new anonymous type amdeatyerformed on the
source data.

OUR IMPLEMENTATION

Because the original implementation in C# is vdegant, we will be closely following it in
our implementation in C++, however taking into agathe specifics of the programming
language.

Because we will be implementing the language ferMkctor container, instead of using a
series of methods line the .NET implementation gaeswill be using functions instead,
because the Vector container does not contain migthods and the C++ language does not
support the extension methods; and of course,datiag new containers would confuse the
programmer.

Instead of the pipelined method calls, as it the C#, the LINQ query will be compiled to a
series of nested calls, like this: OrderBy(Selediéfé¢(Data,...),...),...)

We will also implement the LINQ query through ardiidnal preprocessor instead of
directly integrating it into the compiler, becaubkes would limit us to the use of one single
compiler — probably g++ — and it would make thejgebunsustainable in the long term
because of the fact that changes would have todu rior every new version of the
compiler.

To avoid having to do work the original C++ prepssor already does, such as includes, we

will place our additional preprocessing betweendhginal preprocessor and the compiler.
Thus, the compilation will proceed this way:

43

1) Standard preprocessing

2) Additional preprocessing for LINQ queries
3) Compilation

4) Linking

The additional preprocessor will need to be ablgrozess C++ to a certain degree, but will
not have to parse the code completely, which isrg gomplicated task.

The preprocessor needs to insert newly made furg;tess mentioned previously, into the
code so that they are accessible globally, antaahey are above the place where the LINQ
query is performed — this requirement is imposethieyway the C++ compiler works.
Because of this, we need the preprocessor to krfmevenin the code the query is performed.
This can be in a function, in a method in a class,

In the C++ language, all functions, classes et eaclosed in pairs of braces. Thus all our
preprocessor will have to perform to identify tbedtion is to separate the code into blocks
and sub blocks determined by these braces, arftefuikenize the content of these blocks by
the occurrence of the semicolon character, whighads the end of a line. Furthermore we

will have to take into account strings and commentsch may contain keywords specific

for the LINQ language, that are not to be compiled.

Using this concept, the functions performing therguvill be rather simple. For example, the
functionWher e from this implementation looks as follows:

t enpl at e<t ypename | NPT>
vect or <I NPT> | i ng_wher e(vect or<lI NPT> i np, bool (*cond) (I NPT))

{

vect or <I NPT> out;
typenane vector<INPT>:.:iterator it;
for (it = inp.begin(); it!'=inp.end(); ++it)

i f(cond(*it))
{
}

}

return out;

out . push_back(*it);

}
Compiling the LINQ code

The LINQ queries can be found in the code by trmioence of the keyworidom. This will
disable the programmer to ugem for any other purpose, but that is a natural diaathge
of implementing new functions to the language.

We can use the strictly set structure of the qaexyseparate the code by the keywords. The
condition for where will occur between where anigsk etc.

The compiler itself can then be built as a fini@e machine. A state diagram for our current
implementation is shown in Figure 1.

44

Example:

vect or <doubl e> dotaz=fromint x in pole
where x%==0
sel ect x/2;

will be compiled to:
doubl e ling_select _1(int x)

return x/2;
bool |ing_where_1(int data)
from /
let / string=select(string)
et/itnig se\ect(sm—g
where [string=where(string)
where |/ string=where(string)
ordef by ... dessending / string=orderbydesc(string)
order by / string=orderby(string)
orderby select | string=select(string) .@
select / string=: SE% Klﬂrngselect(strim)
Fig. 1 - state diagram of the compiler FSVI
return x%i==0;

vect or <doubl e> dotaz=ling_sel ect(ling_where(pole
,ling_Were_1),linqg_Select_1);

CURRENT STATE AND OUTLOOK

We successfully implemented a limited part of the@ language preprocessor for the C++,
namely: keyword$rom, where, select andor der by.

45

Our next aim is to implement the keywotdsandgroupby, as well agoin, and additional
features, as the keywordsscending, and the functions for the aggregations. All efsé
keywords can be implemented in similar way we imm@ated the finished part.

REFERENCES
1. C# Version 4.0 Specification. Microsoft Corporation 2010.
Available at <http:// download.microsoft.com/dowadis> [Cit. 5.4.2011]
2. International Standard | SO/IEC 14882:2003. Programming Languages --- C++.
Geneve: ISO 2003

46

